Under slightly acidic conditions and 25 °C, the interaction between phosphate-rich aqueous solutions and gypsum cleavage fragments results in the surface precipitation of brushite (CaHPO 4 ·2H 2 O) crystals, which grow epitaxially on the (010) surface of gypsum. Using an A-centered unit-cell setting for both brushite (Aa) and gypsum (A2/a), the epitaxial relationship implies matching of the planes (010) of both structures and correspondence between equivalent crystallographic directions within these planes. The crystal habit of the overgrowing brushite is thin tabular to laminar on {010} with {111} and {111} as side faces and a clear elongation on [101]. There are two orientations of the brushite plates on the gypsum surface related to each other by a twofold axis on [010]. Thus, the overgrowth is an aggregate of parallel brushite crystals that may be twin-related, with the twofold axis as the twin law. During the interaction, gypsum dissolution is coupled with brushite growth until saturation with respect to both minerals is reached. A model of this thermodynamically driven dissolution-crystallization process is presented using the geochemical code PHREEQC. The epitaxial relationships are explained by comparing the bond system and the crystallographic properties of both minerals.
The epitaxial overgrowth of brushite (CaHPO 4 ·2H 2 O) by the interaction of phosphate-bearing, slightly acidic, aqueous solutions with gypsum (CaSO 4 ·2H 2 O) was investigated in situ using atomic force microscopy (AFM). Brushite growth nuclei were not observed to form on the {010} gypsum cleavage surface, but instead formed in areas of high dissolution, laterally attached to gypsum [101] step edges. During the brushite overgrowth the structural relationships between brushite (Aa) and gypsum (A2/a) result in several phenomena, including the development of induced twofold twining, habit polarity, and topographic effects due to coalescence of like-oriented crystals. The observed brushite growth is markedly anisotropic, with the growth rate along the main periodic bond chains (PBCs) in the brushite structure increasing in the order [101] > [101] > [010], leading to tabular forms elongated on [101]. Such a growth habit may result from the stabilization of the polar [101] direction of brushite due to changes in hydration of calcium ions induced by the presence of sulfate in solution, which is consistent with the stabilization of the gypsum [101] steps during dissolution in the presence of HPO 2-4ions. The coupling between growth and dissolution was found to result in growth rate fluctuations controlled by the changes in the solution composition.
Metatorbernite (Cu(UO(2))(2)(PO(4))(2)·8H(2)O) has been identified in contaminated sediments as a phase controlling the fate of U. Here, we applied atomic force microscopy (AFM) to observe in situ the interaction between metatorbernite cleavage surfaces and flowing aqueous solutions (residence time = 1 min) with different pHs. In contact with deionized water the features of (001) surfaces barely modify. However, changes are remarkable both under acidic and basic conditions. In acidic solutions (pH = 2.5) metatorbernite surface develops a rough altered layer and large pits nucleate on it. The altered layer shows a low adhesion and is removed by the AFM tip during the scanning. The large pits spread rapidly, at few tens of nm/s, indicating a collapse of the structure. The combination of dissolution and the presence of defects in the metatorbernite structure can explain both the collapse process and the alteration of the surfaces under acidic conditions. Other mechanisms such as ion exchange reactions remain speculative. In NaOH solutions (pH = 11.5) metatorbernite dissolves by formation of etch pits bounded by steps parallel to [100], the direction of the most straight periodic bond chains (PBCs) in metatorbernite structure. These steps retreat at ∼0.15 nm/s. Under these conditions dissolution is promoted by the formation of stable uranyl carbonate complexes in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.