Two different constructions generating the low-energy expansion of genus-one configuration-space integrals appearing in one-loop open-string amplitudes have been put forward in refs. [1–3]. We are going to show that both approaches can be traced back to an elliptic system of Knizhnik-Zamolodchikov-Bernard(KZB) type on the twice-punctured torus.We derive an explicit all-multiplicity representation of the elliptic KZB system for a vector of iterated integrals with an extra marked point and explore compatibility conditions for the two sets of algebra generators appearing in the two differential equations.
The string corrections of tree-level open-string amplitudes can be described by Selberg integrals satisfying a Knizhnik–Zamolodchikov (KZ) equation. This allows for a recursion of the α′-expansion of tree-level string corrections in the number of external states using the Drinfeld associator.
While the feasibility of this recursion is well-known, we provide a mathematical description in terms of twisted de Rham theory and intersection numbers of twisted forms. In particular, this leads to purely combinatorial expressions for the matrix representation of the Lie algebra generators appearing in the KZ equation in terms of directed graphs. This, in turn, admits efficient algorithms for symbolic and numerical computations using adjacency matrices of directed graphs and is a crucial step towards analogous recursions and algorithms at higher genera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.