Groundwater transport in crystalline rocks follows pathways along fractured zones because of low primary porosity and permeability in such formations. Fractured systems encompass an imbricated set of joints and fractures with different lengths, apertures and orientations resulting in complex permeable systems with heterogeneous groundwater transport properties. Geophysical well logging has proved effectiveness in detecting depth levels with denser fracture distributions as well as the apparent aperture of fractures contributing to groundwater flow. In many cases, the extension spanned by a fracture network cannot be directly inferred because it may extend beyond the radius of investigation of common well logging probes, thus preventing quantitative estimation of critical length for lateral extension a connected fractured system may have. Here we apply a percolation theory model to estimate the critical length as inferred from the linear density of fracture distribution observed at the borehole wall with an optical imaging probe. Our results are analyzed with electrical well logging data (normal resistivity and single-point resistance) cross borehole slug tests using a set of three boreholes. A critical length of 3.9 m was inferred with a percolation model which revealed consistency with the cross borehole slug tests from two wells situated 10 m and 30 m in the vicinity of the monitored borehole. Our results suggest the utility of inferring critical percolation lengths from fracture parameters obtained using standard well logging imaging techniques with potential applications to evaluate groundwater resources, characterize contaminated sites and provide geotechnical information for works in fractured formations.
Geophysical well logging has been applied for fracture characterization in crystalline terrains by physical properties measurements and borehole wall imaging. Some of these methods can be applied to monitor pumping tests to identify fractures contributing to groundwater flow and, with this, determine hydraulic conductivity and transmissivity along the well. We present a procedure to identify fractures contributing to groundwater flow using spontaneous potential measurements generated by electrokinetic processes when the borehole water head is lowered and then monitored while recovering. The electrokinetic model for flow through a tabular gap is used to interpret the measured data and determine the water head difference that drives the flow through the fracture. We present preliminary results at a test site in crystalline rocks on the campus of the University of São Paulo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.