Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter and experiences a transition from integrable ( = 0) to nonintegrable ( = 0). For small values of , the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter increases and reaches a critical value c , all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large , the survival probability decays exponentially when it turns into a slower decay as the control parameter is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
The phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems.
The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.