Tatool (Training and Testing Tool) was developed to assist researchers with programming training software, experiments, and questionnaires. Tatool is Java-based, and thus is a platform-independent and object-oriented framework. The architecture was designed to meet the require-
Abstract. Exploiting the complex structure of relational data enables to build better models by taking into account the additional information provided by the links between objects. We extend this idea to the Semantic Web by introducing our novel SPARQL-ML approach to perform data mining for Semantic Web data. Our approach is based on traditional SPARQL and statistical relational learning methods, such as Relational Probability Trees and Relational Bayesian Classifiers.We analyze our approach thoroughly conducting three sets of experiments on synthetic as well as real-world data sets. Our analytical results show that our approach can be used for any Semantic Web data set to perform instance-based learning and classification. A comparison to kernel methods used in Support Vector Machines shows that our approach is superior in terms of classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.