Human Papillomavirus (HPV) is the most common sexually transmitted virus. Worldwide, the most common high-risk (HR)-HPV are -16/18, and approximately 70% of cervical cancers (CC) are due to infection by these genotypes. Persistent infection by HR-HPV is a necessary but not sufficient cause of this cancer, which develops over a long period through precursor lesions, which can be detected by cytological screening. Although this screening has decreased the incidence of CC, HPV-related cervical disease, including premalignant and malignant lesions, continues to be a major burden on health-care systems. Although not completely elucidated, the HPV-driven molecular mechanisms underlying the development of cervical lesions have provided a number of potential biomarkers for both diagnostic and prognostic use in the clinical management of women with HPV-related cervical disease, and these biomarkers can also be used to increase the positive predictive value of current screening methods. In addition, they can provide insights into the biology of HPV-induced cancer and thus lead to the development of nonsurgical therapies. Considering the importance of detecting HPV and related biomarkers, a variety of methods are being developed for these purposes. This review summarizes current knowledge of detection methods for HPV, and related biomarkers that can be used to discriminate lesions with a high risk of progression to CC.
Manganese superoxide dismutase (MnSOD/SOD2) is a mitochondria-resident enzyme that governs the types of reactive oxygen species egressing from the organelle to affect cellular signaling. Here, we demonstrate that MnSOD upregulation in cancer cells establishes a steady flow of H2O2 originating from mitochondria that sustains AMP-activated kinase (AMPK) activation and the metabolic shift to glycolysis. Restricting MnSOD expression or inhibiting AMPK suppress the metabolic switch and dampens the viability of transformed cells indicating that the MnSOD/AMPK axis is critical in support cancer cell bioenergetics. Recapitulating in vitro findings, clinical and epidemiologic analyses of MnSOD expression and AMPK activation indicated that the MnSOD/AMPK pathway is most active in advanced stage and aggressive breast cancer subtypes. Taken together, our results indicate that MnSOD serves as a biomarker of cancer progression and acts as critical regulator of tumor cell metabolism.
CONTEXT AND OBJECTIVE: Vulvovaginal candidiasis (VVC) is caused by abnormal growth of yeast-like fungi on the female genital tract mucosa. Patients with diabetes mellitus (DM) are more susceptible to fungal infections, including those caused by species of Candida. The present study investigated the frequency of total isolation of vaginal Candida spp., and its different clinical profiles -colonization, VVC and recurrent VVC (RVVC) -in women with DM type 2, compared with non-diabetic women. The cure rate using fluconazole treatment was also evaluated. DESIGN AND SETTING: Cross-sectional study conducted in the public healthcare system of Maringá, Paraná, Brazil.
METHODS:The study involved 717 women aged 17-74 years, of whom 48 (6.7%) had DM type 2 (mean age: 53.7 years), regardless of signs and symptoms of VVC. The yeasts were isolated and identified using classical phenotypic methods.
RESULTS:In the non-diabetic group (controls), total vaginal yeast isolation occurred in 79 (11.8%) women, and in the diabetic group in 9 (18.8%) (P = 0.000). The diabetic group showed more symptomatic (VVC + RVVC = 66.66%) than colonized (33.33%) women, and showed significantly more colonization, VVC and RVVC than seen among the controls. The mean cure rate using fluconazole was 75.0% in the diabetic group and 86.7% in the control group (P = 0.51). CONCLUSION: We found that DM type 2 in Brazilian women was associated with yeast colonization, VVC and RVVC, and similar isolation rates for C. albicans and non-albicans species. Good cure rates were obtained using fluconazole in both groups.
RESUMO
NOS1−/− mice show reduced inflammatory responses and tissue damage in experimental sepsis models. Baig et al show that NOS1-derived NO production in macrophages leads to proteolysis of SOCS1 to alleviate its repression of NFkB transcriptional activity in response to TLR4-mediated responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.