Resumo Este trabalho implementa um modelo de transferência entre superfície-vegetação-atmosfera para estimar os fluxos de calor sensível e latente, entre outras variáveis, em culturas agrícolas e outras coberturas vegetais. Foram feitas duas implementações distintas para o de resposta estomática das plantas. Estas implementações foram comparadas entre si e com medições de fluxo de calor latente e sensível em uma plantação de soja. Os resultados mostram o impacto das implementações de resposta estomática nos fluxos de calor latente e sensível, e que o modelo possui potencial de aplicações do modelo para previsões operacionais ou para simular cenários de modificações no uso do solo e possíveis mudanças climáticas decorrentes.
Despite a rapid development of Nature-Based Solutions (NBS) for carbon removal in recent years, the methods for evaluating NBS still have certain gaps. We propose an approach based on a combination of remote sensing data and meteorological variables to reconstruct the spatiotemporal variation of net ecosystem exchange from eddy-covariance stations. A Lagrangian particle dispersion model was used for upscaling satellite images and flux towers. We trained data-driven models based on kernel methods separately for each selected land-cover class. The results suggest that the proposed approach to quantifying carbon exchange on a medium-to-large scale by blending eddy covariance flux data with moderate resolution satellite and weather data provides a set of key advantages over previously deployed methods: (1) scalability, achieved via the validation design based on a separate set of eddy covariance stations; (2) high spatial and temporal resolution thanks to the use of Landsat imagery; and (3) robust and accurate predictions due to improved data quality control, advanced machine learning techniques, and rigorous validation. The machine learning models yielded high cross-validation results. Stratification that uses separate Fluxnet stations for each fold of validation ensures that the models are accurate across the area covered by the Fluxnet sites. Overall, we present here a globally scaled technology for the land sector based on high resolution remote sensing imagery, meteorological variables, and direct carbon flux measurements of eddy covariance flux stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.