Summary The significant improvement in processing power, communication, energy consumption, and the size of computational devices has led to the emergence of the Internet of Things (IoT). IoT projects raise many challenges, such as the interoperability between IoT applications because of the high number of sensors, actuators, services, protocols, and data associated with these systems. Semantics solves this problem by using annotations that define the role of each IoT element and reduces the ambiguity of information exchanged between the devices. This work presents SWoTPAD, a semantic framework that helps in the development of IoT projects. The framework is designer oriented and provides a semantic language that is more user‐friendly than OWL‐S and WSML and allows the IoT designer to specify devices, services, environment, and requests. Following this, it makes use of these specifications and maps them for RESTful services. Additionally, it generates an automatic service composition engine that is able to combine services needed to handle complex user requests. We validated this approach with two case studies. The former concerns a residential security system and the latter, the cloud application deployment. The average time required for service discovery and automatic service composition corresponds to 72.9% of the service execution time in the case study 1 and 64.4% in the case study 2.
In this chapter, wearables are presented as assistive technology to support persons with disabilities (PwD) to face the urban space in an autonomous and independently way. In the Inclusive Smart City (ISC), everyone has to be able to access visual and audible information that so far are available just for people that can perfectly see and listen. Several concepts and technologies – such as Accessibility and Universal Design, Pervasive Computing, Wearable Computing, Internet of Things, Artificial Intelligence, and Cloud Computing – are associated to achieve this aim. Also, this chapter discusses some examples of use of wearables in the context of Smart Cities, states the importance of these devices to the successful implementation of Inclusive Smart Cities, as well as presenting challenges and future research opportunities in the field of wearables in ISC.
In this chapter, wearables are presented as assistive technology to support persons with disabilities (PwD) to face the urban space in an autonomous and independently way. In the Inclusive Smart City (ISC), everyone has to be able to access visual and audible information that so far are available just for people that can perfectly see and listen. Several concepts and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.