Background
Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity.Methodology and FindingsWe characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer.ConclusionsThese particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
The occurrence of Blastocystis in animals is high, with a predominance of subtype 1 in the region. This is the first study conducted in Brazil showing the genetic profile of Blastocystis isolated from animals.
Cryptococcus neoformans and C. gattii are the etiologic agents of cryptococcosis, a life-threatening disease in both immunocompromised and immunocompetent hosts. Antifungal resistance has been evaluated using different methods, breakpoints, and sizes of test populations and it is an emerging as a significant issue worldwide. A total of 176 (95 clinical and 81 environmental) C. neoformans and eight clinical C. gattii isolates were evaluated to determine the minimal inhibitory concentration (MIC) according to the Clinical and Laboratory Standards Institute method. A total of 10.5% of the C. neoformans clinical isolates were resistant to amphotericin B (AMB), and 6.2% of the environmental isolates were resistant to fluconazole (FLZ). Environmental and clinical isolates presented epidemiologic cut-off values (ECVs) of 64 and 16 to FLZ and 1 and 2 to AMB, respectively. All of the C. gattii isolates showed high susceptibility to most drugs evaluated. Clinical isolates had lower susceptibility than environmental isolates to AMB and itraconazole whereas environmental isolates had lower susceptibility than the clinical isolates to FLZ, voriconazole, and ketoconazole. However, no difference was found in the susceptibility of the two species. The MICs and ECVs to antifungals can help to select the best therapeutic option for tracking epidemiological resistance among clinical and environmental isolates of Cryptococcus spp. around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.