In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice.
BackgroundTransgenic mice expressing mutated amyloid precursor protein (APP) and presenilin (PS)-1 or -2 have been successfully used to model cerebral β-amyloidosis, one of the characteristic hallmarks of Alzheimer's disease (AD) pathology. However, the use of many transgenic lines is limited by premature death, low breeding efficiencies and late onset and high inter-animal variability of the pathology, creating a need for improved animal models. Here we describe the detailed characterization of a new homozygous double-transgenic mouse line that addresses most of these issues.Methodology/Principal FindingsThe transgenic mouse line (ARTE10) was generated by co-integration of two transgenes carrying the K670N/M671L mutated amyloid precursor protein (APPswe) and the M146V mutated presenilin 1 (PS1) both under control of a neuron-specific promoter. Mice, hemi- as well as homozygous for both transgenes, are viable and fertile with good breeding capabilities and a low rate of premature death. They develop robust AD-like cerebral β-amyloid plaque pathology with glial inflammation, signs of neuritic dystrophy and cerebral amyloid angiopathy. Using our novel image analysis algorithm for semi-automatic quantification of plaque burden, we demonstrate an early onset and progressive plaque deposition starting at 3 months of age in homozygous mice with low inter-animal variability and 100%-penetrance of the phenotype. The plaques are readily detected in vivo by PiB, the standard human PET tracer for AD. In addition, ARTE10 mice display early loss of synaptic markers and age-related cognitive deficits. By applying a γ-secretase inhibitor we show a dose dependent reduction of soluble amyloid β levels in the brain.ConclusionsARTE10 mice develop a cerebral β-amyloidosis closely resembling the β-amyloid-related aspects of human AD neuropathology. Unifying several advantages of previous transgenic models, this line particularly qualifies for the use in target validation and for evaluating potential diagnostic or therapeutic agents targeting the amyloid pathology of AD.
18F-labeled imidazo[2,1-b]benzothiazole ([18F]8) was synthesized and evaluated as a tracer for cerebral β-amyloid deposits (Aβ) by means of positron emission tomography (PET). [18F]8 exhibits a high affinity to Aβ and suitable brain uptake kinetics combined with a high metabolic stability in the brain. In a double transgenic APP/PS1 mouse model of Alzheimer's disease, we demonstrated a specific uptake of [18F]8 in Aβ-containing telencephalic brain regions. The specific binding of [18F]8 to Aβ was confirmed by regional brain biodistribution and autoradiography and correlated to immunohistochemistry staining. Analysis of brain sections of APP/PS1 mouse injected with a cocktail of [18F]8 and reference compound [3H]PiB revealed that the two tracers bind to Aβ plaques in the brain of mouse in a comparable binding pattern. [18F]8 represents the first high-contrast PET imaging agent for detection of Aβ plaques in transgenic mouse model of Alzheimer's disease and holds promise for transfer to a clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.