SUMMARYWe discuss recent advances on robust unfitted finite element methods on cut meshes. These methods are designed to facilitate computations on complex geometries obtained, for example, from computer-aided design or image data from applied sciences. Both the treatment of boundaries and interfaces and the discretization of PDEs on surfaces are discussed and illustrated numerically.
We develop a Nitsche fictitious domain method for the Stokes problem starting from a stabilized Galerkin finite element method with low order elements for both the velocity and the pressure. By introducing additional penalty terms for the jumps in the normal velocity and pressure gradients in the vicinity of the boundary, we show that the method is inf-sup stable. As a consequence, optimal order a priori error estimates are established. Moreover, the condition number of the resulting stiffness matrix is shown to be bounded independently of the location of the boundary. We discuss a general, flexible and freely available implementation of the method in three spatial dimensions and present numerical examples supporting the theoretical results.
We propose a stabilized Nitsche-based cut finite element formulation for the Oseen problem in which the boundary of the domain is allowed to cut through the elements of an easy-to-generate background mesh. Our formulation is based on the continuous interior penalty (CIP) method of Burman et al.[1] which penalizes jumps of velocity and pressure gradients over inter-element faces to counteract instabilities arising for high local Reynolds numbers and the use of equal order interpolation spaces for the velocity and pressure. Since the mesh does not fit the boundary, Dirichlet boundary conditions are imposed weakly by a stabilized Nitsche-type approach. The addition of CIP-like ghost-penalties in the boundary zone allows to prove that our method is inf-sup stable and to derive optimal order a priori error estimates in an energy-type norm, irrespective of how the boundary cuts the underlying mesh. All applied stabilization techniques are developed with particular emphasis on low and high Reynolds numbers. Two-and three-dimensional numerical examples corroborate the theoretical findings. Finally, the proposed method is applied to solve the transient incompressible Navier-Stokes equations on a complex geometry.
We develop a theoretical framework for the analysis of stabilized cut finite element methods for the Laplace-Beltrami operator on a manifold embedded in R d of arbitrary codimension. The method is based on using continuous piecewise polynomials on a background mesh in the embedding space for approximation together with a stabilizing form that ensures that the resulting problem is stable. The discrete manifold is represented using a triangulation which does not match the background mesh and does not need to be shape-regular, which includes level set descriptions of codimension one manifolds and the non-matching embedding of independently triangulated manifolds as special cases. We identify abstract key assumptions on the stabilizing form which allow us to prove a bound on the condition number of the stiffness matrix and optimal order a priori estimates. The key assumptions are verified for three different realizations of the stabilizing form including a novel stabilization approach based on penalizing the surface normal gradient on the background mesh. Finally, we present numerical results illustrating our results for a curve and a surface embedded in R 3 .
Abstract. We present a new composite mesh finite element method for fluid-structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh which is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation which allows us to establish stability and optimal order a priori error estimates, see [45]. We consider here a steady state fluid-structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples. KEY WORDS. Fluid-structure interaction, cut finite element method, embedded meshes, stabilized finite element methods, Nitsche's method
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.