Basic chemistry of copper is responsible for its Janus-faced feature: on one hand, copper is an essential trace element required to interact efficiently with molecular oxygen. On the other hand, interaction with reactive oxygen species in undesired Fenton-like reactions leads to the production of hydroxyl radicals, which rapidly damage cellular macromolecules. Moreover, copper cations strongly bind to thiol compounds disturbing redox-homeostasis and may also remove cations of other transition metals from their native binding sites in enzymes. Nature has learned during evolution to deal with the dangerous yet important copper cations. Bacterial cells use different efflux systems to detoxify the metal from the cytoplasm or periplasm. Despite this ability, bacteria are rapidly killed on dry metallic copper surfaces. The mode of killing likely involves copper cations being released from the metallic copper and reactive oxygen species. With all this knowledge about the interaction of copper and its cations with cellular macromolecules in mind, experiments were moved to the next level, and the antimicrobial properties of copper-containing alloys in an "everyday" hospital setting were investigated. The alloys tested decreased the number of colony-forming units on metallic copper-containing surfaces by one third compared to control aluminum or plastic surfaces. Moreover, after disinfection, repopulation of the surfaces was delayed on copper alloys. This study bridges a gap between basic research concerning cellular copper homeostasis and application of this knowledge. It demonstrates that the use of copper-containing alloys may limit the spread of multiple drug-resistant bacteria in hospitals.
Cupriavidus metallidurans CH34 genome contains an ortholog of Atm1p named AtmA (Rmet_0391, YP_582546). In Saccharomyces cerevisiae, the ABC-type transport system Atm1p is involved in export of iron-sulfur clusters from mitochondria into the cytoplasm for assembly of cytoplasmic iron-sulfur containing proteins. An atmA mutant of C. metallidurans was sensitive to nickel and cobalt but not iron cations. AtmA increased also resistance to these cations in Escherichia coli strains that carry deletions of the genes for other nickel and cobalt transport systems. In C. metallidurans, atmA expression was not significantly induced by nickel and cobalt, but repressed by zinc. AtmA was purified as a 70 kDa protein after expression in E. coli. ATPase activity of AtmA was stimulated by nickel and cobalt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.