Abstract-Coverage criteria based on data-flow have long been discussed in the literature, yet to date they are still of surprising little practical relevance. This is in part because 1) manually writing a unit test for a data-flow aspect is more challenging than writing a unit test that simply covers a branch or statement, 2) there is a lack of tools to support data-flow testing, and 3) there is a lack of empirical evidence on how well data-flow testing scales in practice. To overcome these problems, we present 1) a searchbased technique to automatically generate unit tests for data-flow criteria, 2) an implementation of this technique in the EVOSUITE test generation tool, and 3) a large empirical study applying this tool to the SF100 corpus of 100 open source Java projects. On average, the number of coverage objectives is three times as high as for branch coverage. However, the level of coverage achieved by EVOSUITE is comparable to other criteria, and the increase in size is only 15%, leading to higher mutation scores. These results counter the common assumption that data-flow testing does not scale, and should help to re-establish data-flow testing as a viable alternative in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.