As simulation becomes more present in the military context for variate purposes, the need for accurate behaviors is of paramount importance. In the air domain, a noteworthy behavior relates to how a group of aircraft moves in a coordinated way. This can be defined as formation flying, which, combined with a move-to-goal behavior, is the focus of this work. The objective of the formation control problem considered is to ensure that simulated aircraft fly autonomously, seeking a formation, while moving toward a goal waypoint. For that, we propose the use of artificial potential fields, which reduce the complexities that implementing a complete cognition model could pose. These fields define forces that control the movement of the entities into formation and to the prescribed waypoint. Our formation control approach is parameterizable, allowing modifications that translate how the aircraft prioritize its sub-behaviors. Instead of defining this prioritization on an empirical basis, we elaborate metrics to evaluate the chosen parameters. From these metrics, we use an optimization methodology to find the best parameter values for a set of scenarios. Thus, our main contribution is bringing together artificial potential fields and simulation optimization to achieve more robust results for simulated military aircraft to fly in formation. We use a large set of scenarios for the optimization process, which evaluates its objective function through the simulations. The results show that the use of the proposed approach may generate gains of up to 27% if compared to arbitrarily selected parameters, with respect to one of the metrics adopted. In addition, we were able to observe that, for the scenarios considered, the presence of a formation leader was an obstacle to achieving the best results, demonstrating that our approach may lead to conclusions with direct operational impacts.
Resumo: Análise de risco de terrorismo é um dos maiores desafios enfrentados pelas autoridades que definem
Abstract:Terrorism risk assessment is one of the biggest challenges that authorities must face to define the defensive resource allocation policy for a country. This article provides a brief review of two approaches that have been traditionally used for this purpose: Probabilistic Risk Assessment and Game Theory. Additionally, it introduces the Adversary Risk Analysis approach to the Brazilian context; an innovative methodology that aims to assess risks caused by intelligent opponents. Finally, an application of Adversarial Risk Analysis in a hypothetical situation is presented. The results show that Adversarial Risk Analysis can be useful to support decisions about defensive resource allocation in contexts such as sports mega events, a reality for many countries around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.