BackgroundPhlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response.MethodsWe identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania.ResultsPhylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later.ConclusionsOur results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.
Leishmaniasis is an important worldwide public health problem. Visceral leishmaniasis caused by Leishmania infantum chagasi is mainly transmitted by Lutzomyia longipalpis in the Americas. Leishmania development within the sand fly vector is mostly restricted to the midgut. Thus, a comparative analysis of blood-fed versus infected midguts may provide an invaluable insight into various aspects of sand fly immunity, physiology of blood digestion, and, more importantly, of Leishmania development. To that end, we have engaged in a study to identify expressed sequenced tags (ESTs) from L. longipalpis cDNA libraries produced from midguts dissected at different times post blood meal and also after artificial infection with L. i. chagasi. A total of 2,520 ESTs were obtained and, according to the quality of the sequencing data obtained, assembled into 378 clusters and 1,526 individual sequences or singletons totalizing 1,904 sequences. Several sequences associated with defense, apoptosis, RNAi, and digestion processes were annotated. The data presented here increases current knowledge on the New World sand fly transcriptome, contributing to the understanding of various aspects of the molecular physiology of L. longipalpis, and mechanisms underlying the relationship of this sand fly species with L. i. chagasi.
BackgroundLutzomyia longipalpis is the main vector of visceral leishmaniasis in Latin America. Sandfly immune responses are poorly understood. In previous work we showed that these vector insects respond to bacterial infections by modulating a defensin gene expression and activate the Imd pathway in response to Leishmania infection. Aspects of innate immune pathways in insects (including mosquito vectors of human diseases) have been revealed by studying insect cell lines, and we have previously demonstrated antiviral responses in the L. longipalpis embryonic cell line LL5.MethodsThe expression patterns of antimicrobial peptides (AMPs) and transcription factors were evaluated after silencing the repressors of the Toll pathway (cactus) and Imd pathway (caspar). AMPs and transcription factor expression patterns were also evaluated after challenge with heat-killed bacteria, heat-killed yeast, or live Leishmania.ResultsThese studies showed that LL5 cells have active Toll and Imd pathways, since they displayed an increased expression of AMP genes following silencing of the repressors cactus and caspar, respectively. These pathways were also activated by challenges with bacteria, yeast and Leishmania infantum chagasi.ConclusionsWe demonstrated that L. longipalpis LL5 embryonic cells respond to immune stimuli and are therefore a good model to study the immunological pathways of this important vector of leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.