Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust.The associate editor coordinating the review of this manuscript and approving it for publication was Ahmed Farouk .
No abstract
Abstract-Existing cellular technologies are rapidly coming to their performance limits. This is due not only to the growth in data traffic and in the number of connected terminals, but also because we are on the verge of new era, where everyone and everything will be connected, with more demanding and varied requirements that cannot be satisfied by current networks. On account of this, efforts are being made all over the world to design new wireless technologies that will support the expected demands for the next decade. These technologies, embraced under the commercial name of 5 th generation, are currently being studied, and in this tutorial paper we will give an overview of the main trends that are likely to make their way in the next-generation standards.
We evaluate the impact of variable-code-rate transceivers on cost, capacity and survivability of wavelengthrouted optical networks. The transmission rate and reach tradeoff is quantified for two hypothetical coded modulation schemes (aggressive and conservative) in a wavelength routing network with 50-GHz-spaced channels. The aggressive scenario assumes the 64-QAM modulation format, a small gap to capacity, and a small excess bandwidth. The conservative scenario considers the 16-QAM modulation format, and a larger capacity gap and excess bandwidth. The performance of the conservative and aggressive technologies is evaluated in three representative networks. Transparent reaches are calculated by means of an existing analytical method which assumes the AWGN hypothesis for the nonlinear noise. It is shown that variable-code-rate transceivers enable the concept of soft protection, in which the protection lightpath operates at a data rate which is lower than the corresponding working lightpath, in a way to avoid regeneration. This is specially attractive in the transport of IP traffic, where capacity reduction (in average up to 25%) may be tolerable during a repair time. It is also shown that variable-code-rate transceivers have the potential to offer significant savings in terms of transceiver usage and wavelength occupation, when compared to current fixed-rate transceivers operating at 100, 200 or 400 Gb/s. Finally, practical variable-code-rate transceivers may achieve a discrete set of N code rates, yielding a quantized capacity-versus-reach curve. The system impact of N is evaluated for several network scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.