Methane (CH 4 ) fluxes from world rivers are still poorly constrained, with measurements restricted mainly to temperate climates. Additional river flux measurements, including spatio-temporal studies, are important to refine extrapolations. Here we assess the spatiotemporal variability of CH 4 fluxes from the Amazon and its main tributaries, the Negro, Solimões, Madeira, Tapajós, Xingu, and Pará Rivers, based on direct measurements using floating chambers. Sixteen out of 34 sites were measured during low and high water seasons. Significant differences were observed within sites in the same river and among different rivers, types of rivers, and seasons. Ebullition contributed to more than 50% of total emissions for some rivers. Considering only river channels, our data indicate that large rivers in the Amazon Basin release between 0.40 and 0.58 Tg CH 4 yr -1 . Thus, our estimates of CH 4 flux from all tropical rivers and rivers globally were, respectively, 19-51% to 31-84% higher than previous estimates, with large rivers of the Amazon accounting for 22-28% of global river CH 4 emissions.3
The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.
The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajós and Xingu Rivers show more sensitive quartz than Solimões and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate = 0.04 mm.yr-1), while low sensitivity quartz occurs in less stable Andean terrains ( = 0.24 mm.yr-1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.