Abstract-In this letter, we report on the design, simulation and implementation of an active negative group delay circuit that operates at 1 GHz with a group delay and a gain, respectively, around 2 ns and 2 dB. Analytical formulas are proposed to demonstrate that the adopted topology is able to simultaneously achieve negative group delay (NGD) and gain while fulfilling active device constraints. The theoretical and simulated results are both validated by frequency measurements of a two-stage active microwave circuit.Index Terms-Active devices, negative group delay (NGD).
International audienceThis paper deals with the design and synthesis of active circuits able to simultaneously produce negative group delay and gain at microwave frequencies or for baseband signals. Analytical equations show that the proposed topology meets these objectives while also satisfying active device requirements. Then, a synthesis approach is extracted and applied to design a two stage microwave circuit, further validated by experimental results. This method is extended to the design of a four-stage baseband active circuit providing gain and negative group delay up to 600 MHz. A high relative time-advance is evidenced by time-domain simulations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.