Andre ´Pinkert was born in Schwabach, Germany, in 1981. He studied Chemistry at the University of Erlangen-Nu ¨rnberg, Germany, and received his prediploma and diploma degrees in 2004 and 2008, respectively. During 2005, he joined the Marine Natural Products Group, lead by Murray H. Munro and John W. Blunt, at the University of Canterbury (UoC), New Zealand, working on the isolation and characterization of bioactive metabolites. In early 2006, he returned to Germany and resumed his studies at the University of Erlangen-Nu ¨rnberg, finishing his degree under the supervision of Rudi van Eldik. Associated with his studies, during 2007, he worked for AREVA NP on radio-nuclear chemistry and computer modeling. Since 2008, he is studying towards a Ph.D. degree at UoC under the supervision of Shusheng Pang, Ken Marsh, and Mark Staiger. His research focuses on biocomposites from natural fibers, processed via ionic liquids.
Wood cellulose can be used for producing biofuels and biopolymers, thus offering a solution to global concerns on the excessive use of fossil fuels. This requires a cellulose solvent that also allows the ecofriendly processing of selective wood components. Some ionic liquids (ILs) have shown promising results as cellulose solvents with many advantages over traditional approaches. It is agreed that their ionic nature is responsible for cleaving hydrogen bonds between cellulose chains, resulting in dissolution of the biopolymer. However, it is still necessary to establish a structural relationship between IL cations and anions, which explains why only certain ion combinations show the ability to dissolve cellulose. This work aims to analyze the structural similarities displayed by common cellulose solvents focusing on requirements for ionic liquids to qualify as such. A mutual relationship between IL anions and cations is postulated that offers an explanation for the ability or disability of certain ion combinations to dissolve the biopolymer.
Ionic liquids are molten salts with melting temperatures below the boiling point of water, and their qualification for applications in potential industrial processes does depend on their fundamental physical properties such as density, viscosity and electrical conductivity. This study aims to investigate the structure-property relationship of 15 ILs that are primarily composed of alkanolammonium cations and organic acid anions. The influence of both the nature and number of alkanol substituents on the cation and the nature of the anion on the densities, viscosities and electrical conductivities at ambient and elevated temperatures are discussed. Walden rule plots are used to estimate the ionic nature of these ionic liquids, and comparison with other studies reveals that most of the investigated ionic liquids show Walden rule values similar to many non-protic ionic liquids containing imidazolium, pyrrolidinium, tetraalkylammonium, or tetraalkylphosphonium cations. Comparison of literature data reveals major disagreements in the reported properties for the investigated ionic liquids. A detailed analysis of the reported experimental procedures suggests that inappropriate drying methods can account for some of the discrepancies. Furthermore, an example for the improved presentation of experimental data in scientific literature is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.