Extraction of lipids from Chlorella algae with supercritical hexane resulted in the high lipids yield of approximately 10% obtained at optimum conditions in terms of extraction time and agitation compared to the total content of lipids being 12%. Furthermore, an easiness of hexane recovery may be considered as economically and ecologically attractive. For the first time, in the current work catalytic hydrodeoxygenation (HDO) of Chlorella algal lipids was studied over 5 wt % Ni/SiO2 at 300 °C and under 30 bar total pressure in H2. The conversion of lipids was about 15% as the catalyst was totally deactivated after 60 min. The transformation of lipids proceeded mostly via hydrogenation and hydrogenolysis with formation of free fatty acid (FFA). Lower activity might be attributed to deactivation of catalysts caused by chlorophylls and carotenoids. Even though the conversion is low, future studies in HDO of lipids extracted from other algae species having higher lipid content could be proposed. A coke resistant catalyst might be considered to improve catalytic activity.
BACKGROUND Hydrodeoxygenation (HDO) of Chlorella algal oil extracted with supercritical hexane and stearic acid as a model compound was investigated over several supported Ni and Mo2N–MoO2 catalysts in a semibatch reactor at 300 °C under 30 bar in the presence of hydrogen. RESULTS The results showed that all catalysts were very active in HDO of stearic acid. With crude algal oil, a maximum conversion of lipids of 35% was found with an acidic Ni‐HY‐80 zeolite catalyst after 360 min. The main products in algal oil HDO were fatty acids; whereas maximally only 7% hydrocarbons were formed with Ni‐HY‐80. The main hydrocarbon products were formed via decarbonylation, as the hydrogenation/dehydration route was suppressed. CONCLUSIONS Hydrodeoxygenation of crude Chlorella algal oil was demonstrated over nickel supported on beta zeolite and with a molybdenum oxide–nitride catalyst. Strong catalyst deactivation occurred for the former catalyst, whereas the latter retained its activity. © 2016 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.