Let K be a compact Hausdorff space and let (f n ) n∈N be a pairwise disjoint sequence of continuous functions from K into [0, 1]. We say that a compact space L adds supremum of (f n ) n∈N in K if there exists a continuous surjection π : L −→ K such that there exists sup{f n • π : n ∈ N} in C(L). Moreover, we expect that L preserves suprema of disjoint continuous functions which already existed in C(K). Namely, if sup{g n : n ∈ N} exists in C(K), we must haveThis paper studies the preservation of connectedness in extensions by continuous functions -a technique developed by Piotr Koszmider to add suprema of continuous functions on Hausdorff connected compact spaces -proving the following results:(1) If K is a metrizable and locally connected compactum, then any extension of K by continuous functions is connected (but it may be not locally connected).(2) There exists a disconnected extension of a metrizable connected compactum K.
Senhor, fazei-me instrumento de vossa paz. Onde houveródio, que eu leve o amor. Onde houver ofensa, que eu leve o perdão. Onde houver discórdia, que eu leve a união. Onde houver dúvida, que eu leve a fé. Onde houver erro, que eu leve a verdade. Onde houver desespero, que eu leve a esperança. Onde houver tristeza, que eu leve a alegria. Onde houver trevas, que eu leve a luz. O Mestre, fazei que eu procure mais, consolar que ser consolado, compreender que ser compreendido, amar que ser amado. Poisé dando, que se recebe. E perdoando, que seé perdoado. Eé morrendo que se vive para a vida eterna." Oração de São Francisco. Palavras-chave: Espaço C(K), espaço indecomponível, extensão por funções contínuas, forcing, poucos operadores, espaço hereditariamente Koszmider, espaços essencialmente incomparáveis, espaço hereditariamente fracamente Koszmider, problema de Efimov, princípio diamante.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.