Background Lower gastrointestinal bleeding (LGIB) is a common presentation of surgical admissions, imposing a significant burden on healthcare costs and resources. There is a paucity of standardised clinical predictive tools available for the initial assessment and risk stratification of patients with LGIB. We propose a simple clinical scoring model to prognosticate patients at risk of severe LGIB and an algorithm to guide management of such patients. Methods A retrospective cohort study was conducted, identifying consecutive patients admitted to our institution for LGIB over a 1-year period. Baseline demographics, clinical parameters at initial presentation and treatment interventions were recorded. Multivariate logistic regression was performed to identify factors predictive of severe LGIB. A clinical management algorithm was developed to discriminate between patients requiring admission, and to guide endoscopic, angiographic and/or surgical intervention. Results 226/649 (34.8%) patients had severe LGIB. Six variables were entered into a clinical predictive model for risk stratification of LGIB: Tachycardia (HR ≥ 100), hypotension (SBP < 90 mmHg), anaemia (Hb < 9 g/dL), metabolic acidosis, use of antiplatelet/anticoagulants, and active per-rectal bleeding. The optimum cut-off score of ≥ 1 had a sensitivity of 91.9%, specificity of 39.8%, and positive and negative predictive Values of 45% and 90.2%, respectively, for predicting severe LGIB. The area under curve (AUC) was 0.77. Conclusion Early diagnosis and management of severe LGIB remains a challenge for the acute care surgeon. The predictive model described comprises objective clinical parameters routinely obtained at initial triage to guide risk stratification, disposition and inpatient management of patients.
Background: Lower Gastro-Intestinal Bleeding (LGIB) is a common presentation of surgical admissions, imposing a significant burden on healthcare costs and resources. There is a paucity of standardised clinical predictive tools available for the initial assessment and risk stratification of patients with LGIB. We propose a simple clinical scoring model to prognosticate patients at risk of severe LGIB and an algorithm to guide management of such patients.Methods: A retrospective cohort study was conducted, identifying consecutive patients admitted to our institution for LGIB over a 1-year period. Baseline demographics, clinical parameters at initial presentation and treatment interventions were recorded. Severe LGIB was the primary outcome measure. Multivariate logistic regression was performed to identify factors predictive of severe LGIB. A clinical management algorithm was developed to discriminate between patients requiring admission, and to guide endoscopic, angiographic and/or surgical intervention.Results: 226/649 (34.8%) patients had severe LGIB. Six variables were entered into a clinical predictive model for risk stratification of LGIB: Tachycardia (HR>100), hypotension (SBP<90mmHg), anemia (Hb<9g/dL), metabolic acidosis, use of antiplatelet/anticoagulants, and active per-rectal bleeding. The optimum cut-off score of >1 had a sensitivity of 91.9%, specificity of 39.8%, and Positive and Negative Predictive Values of 45% and 90.2% respectively for predicting severe LGIB. The Area Under Curve (AUC) was 0.77.BConclusion: Early diagnosis and management of severe LGIB remains a challenge for the acute care surgeon. The predictive model described comprises objective clinical parameters routinely obtained at initial triage to guide risk stratification, disposition and inpatient management of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.