This work aims at investigating texture parameters in distinguishing malign and benign breast tumors on ultrasound images. A rectangular region of interest (ROI) containing the tumor and its neighboring was defined for each image. Five parameters were extracted from the complexity curve (CC) of the ROI. Another five parameters were calculated from the grey-level co-occurrence matrix (GLCM) also for the ROI. The same was carried out for internal tumor region, hence, totaling 20 parameters. The linear discriminant analysis was applied to sets of up to five parameters and then the performances were assessed. The most relevant individual parameters were the contrast (con) (from the GLCM over the ROI) and the maximum value (mvi) from the CC just for the tumor internal region). When they were taken together, a correct classification slightly over 80% of the breast tumors was achieved. The highest performance (accuracy=84.2%, sensitivity=87.0%, and specificity=78.8%) was obtained with mvi, con, the standard deviation of the pixel pairs and the entropy, both for GLCM, and the internal region contrast also from GLCM. Parameters extracted from the internal region generally performed better and were more significant than those from the ROI. Moreover, parameters calculated only from CC or GLCM resulted in no statistically significant performance difference. These findings suggest that the texture parameters can be useful to help radiologist in distinguishing between benign or malign breast tumors on ultrasound images.
The segmentation method proposed was capable of delineating the lesion contours with high accuracy in comparison to both the radiologists' delineations and the true delineations of simulated images. Moreover, this method was also found to be robust to human-dependent parameters variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.