Background The increasing availability of remotely sensed data has recently challenged the traditional way of performing forest inventories, and induced an interest in model-based inference. Like traditional design-based inference, model-based inference allows for regional estimates of totals and means, but in addition for wall-to-wall mapping of forest characteristics. Recently Light Detection and Ranging (LiDAR)-based maps of forest attributes have been developed in many countries and been well received by users due to their accurate spatial representation of forest resources. However, the correspondence between such mapping and model-based inference is seldom appreciated. In this study we applied hierarchical model-based inference to produce aboveground biomass maps as well as maps of the corresponding prediction uncertainties with the same spatial resolution. Further, an estimator of mean biomass at regional level, and its uncertainty, was developed to demonstrate how mapping and regional level assessment can be combined within the framework of model-based inference. Results Through a new version of hierarchical model-based estimation, allowing models to be nonlinear, we accounted for uncertainties in both the individual tree-level biomass models and the models linking plot level biomass predictions with LiDAR metrics. In a 5005 km2 large study area in south-central Sweden the predicted aboveground biomass at the level of 18 m ×18 m map units was found to range between 9 and 447 Mg ·ha−1. The corresponding root mean square errors ranged between 10 and 162 Mg ·ha−1. For the entire study region, the mean aboveground biomass was 55 Mg ·ha−1 and the corresponding relative root mean square error 8%. At this level 75% of the mean square error was due to the uncertainty associated with tree-level models. Conclusions Through the proposed method it is possible to link mapping and estimation within the framework of model-based inference. Uncertainties in both tree-level biomass models and models linking plot level biomass with LiDAR data are accounted for, both for the uncertainty maps and the overall estimates. The development of hierarchical model-based inference to handle nonlinear models was an important prerequisite for the study.
As part of the digitalization of the forest planning process, 3D remote sensing data is an important data source. However, the demand for more detailed information with high temporal resolution and yet still being cost efficient is a challenging combination for the systems used today. A new lidar technology based on single photon counting has the possibility to meet these needs. The aim of this paper is to evaluate the new single photon lidar sensor Leica SPL100 for area-based forest variable estimations. In this study, it was found that data from the new system, operated from 3800 m above ground level, could be used for raster cell estimates with similar or slightly better accuracy than a linear system, with similar point density, operated from 400 m above ground level. The new single photon counting lidar sensor shows great potential to meet the need for efficient collection of detailed information, due to high altitude, flight speed and pulse repetition rate. Further research is needed to improve the method for extraction of information and to investigate the limitations and drawbacks with the technology. The authors emphasize solar noise filtering in forest environments and the effect of different atmospheric conditions, as interesting subjects for further research.
In forest management planning, the dynamic treatment unit (DTU) approach has become an increasingly relevant alternative to the traditional planning approach using fixed stands, due to improved remote sensing techniques and optimization procedures, with the potential for the higher goal fulfillment of forest activities. For the DTU approach, the traditional concept of fixed stands is disregarded, and forest data are kept in units with a high spatial resolution. Forest operations are planned by clustering cells to form treatment units for harvest operations. This paper presents a new model with an exact optimization technique for forming DTUs in forest planning. In comparison with most previous models, this model aims for increased flexibility by modelling the spatial dimension according to cell proximity rather than immediate adjacency. The model is evaluated using a case study with harvest flow constraints for a forest estate in southern Sweden, represented by 3587 cells. The parameter settings differed between cases, resulting in varying degrees of clustered DTUs, which caused relative net present value losses of up to 4.3%. The case without clustering had the lowest net present value when considering entry costs. The solution times varied between 2.2 s and 42 min 6 s and grew rapidly with increasing problem size.
Accurate and up-to-date data about growing stock volume are essential for forest management planning. Airborne Laser Scanning (ALS) is known for producing accurate wall-to-wall predictions but the data are at present collected at long time intervals. Digital Photogrammetry (DP) is cheaper and often more frequently available but known to be less accurate. This study investigates the potential of using contemporary DP data together with older ALS data and compares this with the case when only old ALS data are trained with recent field data. Combining ALS data from 2010 to 2011 with DP data from 2015, both trained with National Forest Inventory (NFI) field plot data from 2015, improved predictions of growing stock volume. Validation using data from 100 stands inventoried in 2015 gave an RMSE of 24.3% utilizing both old ALS data and recent DP data, 26.0% for old ALS only and 24.9% for recent DP only. If information about management actions were assumed available, combining old ALS and recent DP gave RMSE of 23.0%, only ALS 23.3% and only DP 23.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.