Global food demand is growing rapidly. Livestock grazing can provide a valuable source of protein, but conventional grazing is often unsustainable. We studied an 800,000-ha section of a threatened ecoregion in southeastern Australia. Conventional management in the region involves continuous livestock grazing with few rest periods and regular fertilizer application. By using remotely sensed data on tree cover and extensive field data on livestock grazing regimes, soil chemistry, tree diameters, and tree regeneration, we show that the region is facing a tree regeneration crisis. Under conventional management, across the region, millions of hectares of land currently supporting tens of millions of trees will be treeless within decades from now. This would have severe negative ramifications for biodiversity and key ecosystem services, including water infiltration and shade provision for livestock. However, we identified an unexpected win-win solution for tree regeneration and commercial grazing. A relatively new practice in the region is fast-rotational grazing, characterized by prolonged rest periods in between short, intensive grazing events. The probability of regeneration under fast-rotational grazing was up to 4-fold higher than under conventional grazing, and it did not differ significantly from the probability of regeneration in ungrazed areas. In addition, trees were more likely to regenerate where soil nutrient levels were low. These findings suggest that the tree regeneration crisis can be reversed by applying low-input, fastrotational grazing. New policy settings supporting these practices could signal a turning point for the region, from ecological decline to ecological recovery.countryside biogeography ͉ grassy box woodlands ͉ holistic management ͉ rotational grazing ͉ scattered trees
Effective biodiversity monitoring is critical to evaluate, learn from, and ultimately improve conservation practice. Well conceived, designed and implemented monitoring of biodiversity should: (i) deliver information on trends in key aspects of biodiversity (e.g. population changes); (ii) provide early warning of problems that might otherwise be difficult or expensive to reverse; (iii) generate quantifiable evidence of conservation successes (e.g. species recovery following management) and conservation failures; (iv) highlight ways to make management more effective; and (v) provide information on return on conservation investment. The importance of effective biodiversity monitoring is widely recognized (e.g. Australian Biodiversity Strategy). Yet, while everyone thinks biodiversity monitoring is a good idea, this has not translated into a culture of sound biodiversity monitoring, or widespread use of monitoring data. We identify four barriers to more effective biodiversity monitoring in Australia. These are: (i) many conservation programmes have poorly articulated or vague objectives against which it is difficult to measure progress contributing to design and implementation problems; (ii) the case for long-term and sustained biodiversity monitoring is often poorly developed and/or articulated; (iii) there is often a lack of appropriate institutional support, co-ordination, and targeted funding for biodiversity monitoring; and (iv) there is often a lack of appropriate standards to guide monitoring activities and make data available from these programmes. To deal with these issues, we suggest that policy makers, resource managers and scientists better and more explicitly articulate the objectives of biodiversity monitoring and better demonstrate the case for greater investments in biodiversity
Farmland biodiversity is greatly enhanced by the presence of trees. However, farmland trees are declining worldwide, including in North America, Central America, and parts of southern Europe. We show that tree decline and its likely consequences are particularly severe in Australia's temperate agricultural zone, which is a threatened ecoregion. Using field data on trees, remotely sensed imagery, and a demographic model for trees, we predict that by 2100, the number of trees on an average farm will contract to two-thirds of its present level. Statistical habitat models suggest that this tree decline will negatively affect many currently common animal species, with predicted declines in birds and bats of up to 50% by 2100. Declines were predicted for 24 of 32 bird species modeled and for all of six bat species modeled. Widespread declines in trees, birds, and bats may lead to a reduction in economically important ecosystem services such as shade provision for livestock and pest control. Moreover, many other species for which we have no empirical data also depend on trees, suggesting that fundamental changes in ecosystem functioning are likely. We conclude that Australia's temperate agricultural zone has crossed a threshold and no longer functions as a selfsustaining woodland ecosystem. A regime shift is occurring, with a woodland system deteriorating into a treeless pasture system. Management options exist to reverse tree decline, but new policy settings are required to encourage their widespread adoption.countryside biogeography | grassy box woodlands | ranchland | regime shift | scattered trees T he future of farmland biodiversity is a major concern around the world (1-3). Farmland biodiversity is valuable in its own right, but also because it provides ecosystem services that are of direct benefit to agricultural production. For example, birds and bats control insect pests (4-6), and trees provide shade for livestock (7,8). Scattered trees occurring throughout the farmland matrix are prominent features of agricultural landscapes around the world, including in southern Europe (9, 10), North America (11, 12), Central America (13-15), and Australia (16). Farmland trees often represent relicts of largely cleared forest or woodland ecosystems (17,18) and are believed to play important roles in maintaining ecosystem function and farmland biodiversity (7,13,16). Southeastern Australia's temperate agricultural zone is part of a threatened ecoregion (19) where farmland trees are declining rapidly. In cropping landscapes, trees are cleared to make way for agricultural machinery (20,21). In livestock grazing landscapes, trees are declining because of a combination of natural or accelerated tree mortality coupled with widespread recruitment failure (22). The decline of scattered trees is increasingly recognized as a threat to biodiversity and associated ecosystem services, both in the academic literature (7,17,20,(22)(23)(24) and increasingly in conservation policy (25).Scattered trees are declining not only in Australia, b...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.