Abstract. This paper presents an extended reanalysis of the rainfall-induced geo-hydrological events that have occurred in the last 70 years in the alpine area of the Lombardy region, Italy. The work is focused on the description of the major meteorological triggering factors that have caused diffuse episodes of shallow landslides and debris flow. The aim of this reanalysis was to try to evaluate their magnitude quantitatively. The triggering factors were studied following two approaches. The first one started from the conventional analysis of the rainfall intensity (I) and duration (D) considering local rain gauge data and applying the I–D threshold methodology integrated with an estimation of the events' return period. We then extended this analysis and proposed a new index for the magnitude assessment (magnitude index, MI) based on frequency–magnitude theory. The MI was defined considering both the return period and the spatial extent of each rainfall episode. The second approach is based on a regional-scale analysis of meteorological triggers. In particular, the strength of the extratropical cyclone (EC) structure associated with the precipitation events was assessed through the sea level pressure tendency (SLPT) meteorological index. The latter has been estimated from the Norwegian cyclone model (NCM) theory. Both indexes have shown an agreement in ranking the event's magnitude (R2=0.88), giving a similar interpretation of the severity that was also found to be in accordance with the information reported in historical databases. This back analysis of 70 years in Valtellina identifies the MI and the SLPT as good magnitude indicators of the event, confirming that a strong cause–effect relationship exists among the EC intensity and the local rainfall recorded on the ground. In respect of the conventional I–D threshold methodology, which is limited to a binary estimate of the likelihood of landslide occurrence, the evaluation of the MI and the SLPT indexes allows quantifying the magnitude of a rainfall episode capable of generating severe geo-hydrological hazards.
Intense meteorological events are the primary cause of geohazard phenomena in mountain areas. In this paper, we present a study of the intense rainfall event that occurred in the provinces of Lecco and Sondrio from 11 to 12 June 2019. The aim of our work is to understand the effect of local topography on the spatial distribution of rainfall and to attempt the reconstruction of a realistic rainfall field relative to that extreme event. This task represents a challenge in the context of complex orography. Classical rain-gauge interpolation techniques, such as Kriging, may be too approximate, while meteorological models can be complex and often unable to accurately predict rainfall extremes. For these reasons, we tested the linear upslope model (LUM) designed for estimating rainfall records in orographic precipitation. This model explicitly addresses the dependence of rainfall intensification caused by the terrain elevation. In our case study, the available radio sounding data identified the convective nature of the event with a sustained and moist southern flow directed northward across the Pre-Alps, resulting in an orographic uplift. The simulation was conducted along a smoothed elevation profile of the local orography. The result was a reliable reconstruction of the rainfall field, validated with the ground-based rain gauge data. The error analysis revealed a good performance of the LUM with a realistic description of the interaction between the airflow and local orography. The areas subjected to rainfall extremes were correctly identified, confirming the determinant role of complex terrain in precipitation intensification.
Landslides over steep slopes, floods along rivers plains and debris flows across valleys are hydrogeological phenomena typical for mountain regions. Such events are generally triggered by rainfall, which can have large variability in terms of both its intensity and volume. Furthermore, terrain predisposition and the presence of some disturbances, such as wildfires, can have an adverse effect on the potential risk. Modelling the complex interaction between these components is not a simple task and cannot always be carried out using instability thresholds that only take into account the characteristics of the rainfall events. In some particular cases, external factors can modify the existing delicate equilibrium on the basis of which stability thresholds are defined. In particular, events such as wildfires can cause the removal of vegetation coverage and the modification of the soil terrain properties. Therefore, wildfires can effectively reduce the infiltration capacity of the terrain and modify evapotranspiration. As a result, key factors for slope stability, such as the trend of the degree of saturation of the terrain, can be strongly modified. Thus, studying the role of wildfire effects on the terrain's hydrological balance is fundamental to establish the critical conditions that can trigger potential slope failures (i.e., shallow landslides and possible subsequent debris flows). In this work, we investigate the consequences of wildfire on the stability of slopes through a hydrological model that takes into account the wildfire effects and compare the results to the current stability thresholds. Two case studies in the Ardenno (IT) and Ronco sopra Ascona (CH) municipalities were chosen for model testing. The aim of this paper is to propose a quantitative analysis of the two cases studies, taking into account the role of fire in the slope stability assessment. The results indicate how the post-fire circumstances strongly modify the ability of the terrain to absorb rainfall water. This effect results in a persistently drier terrain until a corner point is reached, after which the stability of the slope could be undermined by a rainfall event of negligible intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.