This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.
Animal experiments are necessary for a better understanding of diseases and for developing new therapeutic strategies. The mouse (Mus musculus) is currently the most popular laboratory animal in biomedical research. Experimental procedures on animals often require anesthesia and/or analgesia to obtain adequate immobilization and to reduce stress or pain. Mice anesthesia is challenging for several reasons including the animals' size, metabolic rate, and the high risk of hypothermia and hypoglycemia. Moreover, anesthetic agents influence physiological parameters, further interfering with experimental results. Small animal imaging procedures are increasingly used in biomedical research both because the animals allow in vivo monitoring and because they are readily available for longitudinal and noninvasive studies as well as investigations into the evolution of diseases and the effects of new therapies. Anesthesia must adapt to the imaging technique, the procedure length, and the aim of the study. The purpose of this article is to review the existing literature on anesthetic protocols adopted in mice for molecular imaging studies and to report our experience.
The thyroid gland originates from the ventral floor of the foregut as a thickening of the endodermal cell layer. The molecular mechanisms underlying the early steps of thyroid morphogenesis are not known. Gene targeting experiments have contributed to the identification of several transcription factors, in general playing a role in the proliferation, survival, and migration of the thyroid cell precursors. The experiments reported here analyze the expression of the transcription factors Titf1, Hhex, Pax8, and Foxe1 in the thyroid primordium of null mutants of each of them. We found that most of these transcription factors are linked in an integrated regulatory network, each of them controlling the presence of other members of the network. The expression of Foxe1 is regulated in an intriguing fashion as it is strongly dependent on the presence of Pax8 in thyroid precursor cells, while the expression of the same gene in the pharyngeal endoderm surrounding the primordium is dependent on Sonic hedgehog (Shh)-derived signaling. Moreover, by the generation of mouse mutants expressing Foxe1 exclusively in the thyroid primordium, we provide a better understanding of the role of Foxe1 in these cells in order to acquire the competence to migrate into the underlying mesenchyme. In conclusion, we provide the first evidence of gene expression programs, controlled by a hierarchy of transcription factors expressed in the thyroid presumptive gut domain and directing the progression of thyroid morphogenesis.
Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.