Due to the increasing importance of diet on health management, it remains of utmost interest to unravel how food is processed in the human digestive system. Food structure can significantly influence food processing, affecting its performance during eating and digestion. Specifically, the digestion of carbohydrate-based foods requires further insight due to their contribution to blood glucose levels. The knowledge of starch digestion kinetics will contribute to designing tailored foods for managing postprandial glucose levels.The objective of this doctoral thesis was to acquire a better understanding of the impact of microstructure on starch digestion and how digestive enzymes might be modulated by the use of phenolic compounds. With that purpose, the role of bread structure on in vivo mastication, and in vitro digestion was evaluated. Subsequently, starch gels from different sources were produced and digested in an in vitro oro-gastro-intestinal digestion system to analyze the impact of gel microstructure. After the microstructure studies on bread and starch gels, different phenolic acids or seaweed polyphenolic extracts were explored as inhibitors of starch digestive enzymes, and the involvement of starch gel microstructure on the enzymatic digestion was assessed.Mastication of toasted wheat breads was affected by their different structures, despite no differences in the sensory perception was observed. Bolus texture was also altered by bread structure and texture. The breadmaking process offered the possibility to modify the bread structure. In fact, varying dough shaping led to bread with different crumb structures and texture properties. After stressing the importance of selecting the in vitro oral processing method used to simulate mastication, the further digestion of bread with different crumb structures confirmed that they were differently disaggregated yielding variations on posterior starch digestibility. Once stating the importance of crumb microstructure on starch digestion, the focus was shifted to connect starch gels microstructure with its in vitro digestion. Gels obtained with a different type of starch, from cereals, pulses, or tubers, showed different digestibility, which was related to their microstructure but also their amylose content. Considering the action of digestive enzymes (α-amylase and α-glucosidase) on starch hydrolysis, different phenolic compounds were studied to understand the interactions between phenolics and either enzymes or substrates. The most effective way to inhibit enzymes was to incubate them with phenolic acids. A higher concentration of the inhibitor was needed when phenolic compounds interacted previously with the substrate, due to their retention within the starch gel. The chemical structure of phenolic acids controlled the enzyme inhibition. Similarly, complex phenolic extracts, like those extracted from A. nodosum seaweed could be used to inhibit digestive enzymes, showing greater inhibition effect when they i i ABSTRACT were previously incubated with the enzyme, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.