Magnetic near-field probes (NFP) represent a suitable tool to measure the magnetic field level from a small electromagnetic interference (EMI) source. This kind of antenna is useful as a magnetic field probe for pre-compliance EMC measurements or debugging tasks since the user can scan a printed circuit board (PCB) looking for locations with strong magnetic fields. When a strong H-field point is found, the designer should check the PCB layout and components placement in that area to detect if this could result in an EMI source. This contribution focuses on analyzing the performance of an easy to build and low-cost H-field NFP designed and manufactured using a standard PCB stack-up. Thereby, the frequency range and sensitivity of the NFP-PCB are analyzed through a Finite Element Method (FEM) simulation model that makes it possible to evaluate its sensibility and effective frequency range. The numerical results obtained with the FEM models are validated against measurements to verify the design and performance of our NFP. The FEM model reproduces the experimental procedure, which is used to evaluate the performance of the NFP in terms of sensitivity by means of the simulated near-field distribution. The NFP-PCB has almost a flat response from 180 MHz to 6 GHz, with an almost perfect concordance between numerical and experimental S21 results. The numerical results show an average transmission loss of −27.9 dB by considering the flat response bandwidth, whereas the experimental one is −29.7 dB. Finally, the designed NFP is compared to two high-quality commercial probes in order to analyze its performance.
The study and measurement of the shielding effectiveness (SE) of planar materials is required to predict the suitability of a certain material to form an enclosed electromagnetic shield. One of the most widely used standards for measuring the SE of planar materials is ASMT D4935-18. It is based on a coaxial sample holder (CSH) that operates up to 1.5 GHz. Due to this standard’s frequency limitations, new variants with higher frequency limits have been developed by decreasing the size of the CSH conductors and the samples. However, this method and its high-frequency variants require two types of samples with very specific geometries and sizes. This method is unsuitable for certain types of nanomaterials due to their complex mechanization at such undersized scales. This contribution proposes an alternative SE measurement method based on an absorber box that mitigates the problems presented by the ASTM D4935-18 standard. The SE of rigid nanomaterial samples based on several concentrations of multi-walled carbon nanotubes (MWCNT) and two different fiber reinforcements have been obtained.
The opening of low wage nations to FDI has created much more competition for investment since the beginning of the 1990s. Observers in middle-income developing countries such as Brazil, Malaysia and Mexico, which have benefited from FDI, express fears of losing to new, lower wage destinations. Are such countries facing a dilemma, in which the very wage growth provided by FDI must be reversed to continue attracting investment? Or, are there alternative means of enticing multinational corporations, in particular physical infrastructure, which avoid a "race to the bottom" in terms of living standards and in fact aid in development goals? Empirical results indicate that while wages have become a more important determinant of FDI between the 1980s and 1990s, so has infrastructure quality.
Electromagnetic interferences (EMI) can cause different kinds of problems in digital and analog systems, leading to malfunctions, system reboots, or even permanent damage to the system if this is not adequately designed or protected. Nowadays, most electronic products are connected to the main power network or are designed to be interconnected with others through cables. These cable interconnections are becoming more difficult due to the rigid restrictions related to the accomplishment of electromagnetic compatibility (EMC) compliance. When the cables of a system represent an EMI source, it cannot pass the conducted or radiated emissions test. A widely used technique to reduce these problems is applying an EMI suppressor such as a sleeve core. This EMI suppressor provides selective attenuation of undesired interference components that the designer may wish to suppress, and it does not significantly affect the intended signal. This contribution focuses on analyzing different nanocrystalline (NC) EMI suppressors’ performance intended for attenuating interferences in cables. Some NC novel samples are characterized and compare to MnZn and NiZn cores to determine this novel material’s effectiveness compared to the conventional ceramic solutions by analyzing samples with different dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.