A novel bioink and a dispensing technique for 3D tissue‐engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low‐viscosity cell‐laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low‐viscosity cell‐responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells.
We present a new strategy for the fabrication of artificial skeletal muscle tissue with functional morphologies based on an innovative 3D bioprinting approach. The methodology is based on a microfluidic printing head coupled to a co-axial needle extruder for high-resolution 3D bioprinting of hydrogel fibers laden with muscle precursor cells (C2C12). To promote myogenic differentiation, we formulated a tailored bioink with a photocurable semi-synthetic biopolymer (PEG-Fibrinogen) encapsulating cells into 3D constructs composed of aligned hydrogel fibers. After 3-5 days of culture, the encapsulated myoblasts started migrating and fusing, forming multinucleated myotubes within the 3D bioprinted fibers. The obtained myotubes showed high degree of alignment along the direction of hydrogel fiber deposition, further revealing maturation, sarcomerogenesis, and functionality. Following subcutaneous implantation in the back of immunocompromised mice, bioprinted constructs generated organized artificial muscle tissue in vivo. Finally, we demonstrate that our microfluidic printing head allows to design three dimensional multi-cellular assemblies with an exquisite compartmentalization of the encapsulated cells. Our results demonstrate an enhanced myogenic differentiation with the formation of parallel aligned long-range myotubes. The approach that we report here represents a robust and valid candidate for the fabrication of macroscopic artificial muscle to scale up skeletal muscle tissue engineering for human clinical application.
Poly(divinylbenzene) emulsion-derived (PolyHIPE) solid foams prepared with porogens (toluene, chlorobenzene, (2-chloroethyl)benzene, 1,2-dichlorobenzene, and 1-chloro-3-phenylpropane) in the oil phase have morphologies and surface areas that are strongly influenced by the nature of the porogen. For the case where the surfactant employed is Span 80, we show that the solid foam structure depends on (i) the ability of the solvent to swell the growing network, (ii) the solvent polarity, and (iii) the ability of the solvent to adsorb at the emulsion interface. In particular, relatively polar solvents that are able to transport water through the emulsion continuous phase (Ostwald ripening) are shown to produce much lower surface areas than analogous resins prepared by homogeneous solution polymerization of divinylbenzene in the presence of the solvent in question alone. The influence of Ostwald ripening is further suggested by the observation that surface area decreases with increasing emulsion aqueous phase content for relatively polar solvents whereas little variation in surface area with aqueous phase content is observed for more hydrophobic solvents. All PolyHIPEs prepared were characterized by SEM, TEM, N 2 sorption analysis, and mercury intrusion porosimetry. The relative merits of TEM and mercury intrusion porosimetry as techniques for the reliable characterization of the solid foams are discussed.
In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>10(7) cells ml(-1)), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamide (GelMA), chondroitin sulfate amino ethyl methacrylate (CS-AEMA) and hyaluronic acid methacrylate (HAMA). The polymers were used to prepare three photocurable bioinks with increasing degree of biomimicry: (i) GelMA, (ii) GelMA + CS-AEMA and (iii) GelMA + CS-AEMA + HAMA. Alginate was added to the bioinks as templating agent to form stable fibers during 3D printing. In all cases, bioink solutions were loaded with bone marrow-derived human mesenchymal stem cells (BM-MSCs). After printing, the samples were cultured in expansion (negative control) and chondrogenic media to evaluate the possible differentiating effect exerted by the biomimetic matrix or the synergistic effect of the matrix and chondrogenic supplements. After 7, 14, and 21 days, gene expression of the chondrogenic markers (COL2A1 and aggrecan), marker of osteogenesis (COL1A1) and marker of hypertrophy (COL10A1) were evaluated qualitatively by means of fluorescence immunocytochemistry and quantitatively by means of RT-qPCR. The observed enhanced viability and chondrogenic differentiation of BM-MSCs, as well as high robustness and accuracy of the employed deposition method, make the presented approach a valid candidate for advanced engineering of cartilage tissue.
Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is largely conferred by its compartmentalized zonal microstructure and composition. Current clinical treatments fail to regenerate new tissue that recapitulates this zonal structure. Consequently, regenerated tissue often lacks long-term stability. To address this growing problem, we propose the development of tissue engineered biomaterials that mimic the zonal cartilage organization and extracellular matrix composition through the use of a microfluidic printing head bearing a mixing unit and incorporated into an extrusion-based bioprinter. The system is devised so that multiple bioinks can be delivered either individually or at the same time and rapidly mixed to the extrusion head, and finally deposited through a coaxial nozzle. This enables the deposition of either layers or continuous gradients of chemical, mechanical and biological cues and fabrication of scaffolds with very high shape fidelity and cell viability. Using such a system we bioprinted cell-laden hydrogel constructs recapitulating the layered structure of cartilage, namely, hyaline and calcified cartilage. The construct was assembled out of two bioinks specifically formulated to mimic the extracellular matrices present in the targeted tissues and to ensure the desired biological response of human bone marrow-derived mesenchymal stem cells and human articular chondrocytes. Homogeneous and gradient constructs were thoroughly characterized in vitro with respect to long-term cell viability and expression of hyaline and hypertrophic markers by means of real-time quantitative PCR and immunocytochemical staining. After 21 days of in vitro culture, we observed production of zone-specific matrix. The PCR analysis demonstrated upregulated expression of hypertrophic markers in the homogenous equivalent of calcified cartilage but not in the gradient heterogeneous construct. The regenerative potential was assessed in vivo in a rat model. The histological analysis of surgically damaged rat trochlea revealed beneficial effect of the bioprinted scaffolds on regeneration of OC defect when compared to untreated control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.