Volcanic phenomena are currently monitored by the detection of physical and chemical observations. Generally, the ground deformation field is the most relevant shallow expression of the geometric and physical parameters variations in the magmatic reservoir. In this study, we propose a novel method for the direct estimation of the geometric parameters of sources responsible for volcanic ground deformation detected via the DInSAR technique. Starting with the biharmonic properties of the deformation field, we define an approach based on the Multiridge and ScalFun methods to achieve relevant information about both the positions and shapes of active sources, such as the Mogi source. Our methodology is definitely different from the methods currently used for modeling ground-deformation sources, mainly based on forward or inverse techniques. In fact, (i) it does not require any assumptions about the source type, and (ii) it is not influenced by the distribution of medium elastic parameters or (iii) the presence of high-frequency noise in the dataset. For synthetic cases, we accurately estimate the depth to the source within a 3% error. Finally, we study the real case of the Okmok volcano ground-deformation field and achieve results compatible with those in previous works.
Uturuncu volcano (southwestern Bolivia) is localized within one of the largest updoming volcanic zones, the Altiplano Puna Volcanic Complex (APVC). In several geodetic studies the observed uplift phenomenon is analyzed and modeled by considering a deep source, related to the Altiplano Puna Magma Body (APMB). In this framework, we perform a multiscale analysis on the 2003–2010 ENVISAT satellite data to investigate the existence of a multi-source scenario for this region. The proposed analysis is based on Cross-correlation and Multiridge method, pointing out the spatial and temporal multiscale properties of the deformation field. In particular, we analyze the vertical component of ground deformation during two time interval: within the 2005–2008 time interval an inflating source at 18.7 km depth beneath the central zone of the APVC is retrieved; this result is in good agreement with those proposed by several authors for the APMB. Between August 2006 and February 2007, we identify a further inflating source at 4.5 km depth, beneath Uturuncu volcano; the existence of this latter, located just below the 2009–2010 seismic swarm, is supported by petrological, geochemical, and geophysical evidence, indicating as a possible interpretative scenario the action of shallow, temporarily trapped fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.