Ir(III) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)2(CH3CN)2](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)2L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)2L2](+), with L = tert-butyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Electrochemical and photophysical studies, along with density functional theory calculations, allowed a comprehensive rationalization of the electronic properties of 1-5. In acetonitrile at 298 K, complexes equipped with bipyridine or phenanthroline ancillary ligands (1-3) exhibit intense and structureless emission bands centered at around 540 nm, with metal-to-ligand and ligand-to-ligand charge transfer (MLCT/LLCT) character; their photoluminescence quantum yields (PLQYs) are in the range of 55-70%. By contrast, the luminescence band of 5 is weak, structured, and blue-shifted and is attributed to a ligand-centered (LC) triplet state of the tetrazolate cyclometalated ligand. The PLQY of 4 is extremely low (<0.1%) since its lowest level is a nonemissive triplet metal-centered ((3)MC) state. In rigid matrix at 77 K, all of the complexes exhibit intense luminescence. Ligands 1-3 are also strong emitters in solid matrices at room temperature (1% poly(methyl methacrylate) matrix and neat films), with PLQYs in the range of 27-70%. Good quality films of 2 could be obtained to make light-emitting electrochemical cells that emit bright green light and exhibit a maximum luminance of 310 cd m(-2). Tetrazolate cyclometalated ligands push the emission of Ir(III) complexes to the blue, when compared to pyrazolate or triazolate analogues. More generally, among the cationic Ir(III) complexes without fluorine substituents on the cyclometalated ligands, 1-3 exhibit the highest-energy MLCT/LLCT emission bands ever reported.
In this review, the main families of nanoantioxidants and the chemical methods used to measure their antioxidant activity are reported.
Conspectus Iridium(III) complexes have assumed a prominent role in the areas of photochemistry and photophysics due to the peculiar properties of both the metal itself and the ligand environment that can be assembled around it. Ir(III) is larger, heavier, and bears a higher ionic charge than its analogue and widely used d6 ions such as Fe(II) and Ru(II). Accordingly, its complexes exhibit wider ligand-field d–d orbital splitting with electronic levels centered on the metal, typically nonemissive and photodissociative, not playing a relevant role in excited-state deactivations. In other words, iridium complexes are typically more stable and/or more emissive than Fe(II) and Ru(II) systems. Additionally, the particularly strong heavy-atom effect of iridium promotes singlet–triplet transitions, with characteristic absorption features in the UV–vis and relatively short excited-state lifetimes of emissive triplet levels. Ir(III) is also a platform for anchoring ligands of rather different sorts. Its versatile chemistry includes not only coordination with classic N∧N neutral ligands but also the binding of negatively charged chelators, typically having a cyclometalating C∧N anchor. The carbon–metal bond in these systems has some degree of covalent character, but this does not preclude a localized description of the excited states of the related complexes, which can be designated as metal-centered (MC), ligand-centered (LC), or charge transfer (CT), allowing a simplified description of electronic and photophysical properties. The possibility of binding different types of ligands and making heteroleptic complexes is a formidable tool for finely tuning the nature and energy of the lowest electronic excited state of cationic Ir(III) complexes by ligand design. Herein we give an account of our work on several families of iridium complexes typically equipped with two cyclometalating bidentate ligands (C∧N), in combination with mono or bidentate “ancillary” ligands with N∧N, C∧N, and C∧C motifs. We have explored new synthesis routes for both cyclometalating and ancillary ligands, obtaining primarily cationic complexes but also some neutral or even negatively charged systems. In the domain of the ancillary ligands, we have explored isocyanides, carbenes, mesoionic triazolylidenes, and bis-tetrazolic ligands. For the cyclometalating moiety, we have investigated carbene, mesoionic triazolylidene, and tetrazolic systems. Key results of our work include new strategies to modify both cyclometalating and ancillary ligands by relocating ionic charges, the determination of new factors affecting the stability of complexes, a demonstration of subtle structural effects that strongly modify the photophysical properties, new options to get blue-greenish emitters for optoelectronic devices, and a set of ligand modifications allowing the optimization of electrochemical and excited-state properties to obtain new promising Ir(III) complexes for photoredox catalysis. These results constitute a step forward in the preparation of custom i...
The reactions of alkylperoxyl radicals with phenols have remained difficult to investigate in water. We describe herein a simple and reliable method based on the inhibited autoxidation of water/THF mixtures, which we calibrated against pulse radiolysis. With this method we measured the rate constants kinh for the reactions of 2-tetrahydrofuranylperoxyl radicals with reference compounds: urate, ascorbate, ferrocenes, 2,2,5,7,8-pentamethyl-6-chromanol, Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-acetic acid, 2,6-di-tert-butyl-4-methoxyphenol, 4-methoxyphenol, catechol and 3,5-di-tert-butylcatechol. The role of pH was investigated: the value of kinh for Trolox and 4-methoxyphenol increased 11- and 50-fold from pH 2.1 to 12, respectively, which indicate the occurrence of a SPLET-like mechanism. H(D) kinetic isotope effects combined with pH and solvent effects suggest that different types of proton-coupled electron transfer (PCET) mechanisms are involved in water: less electron-rich phenols react at low pH by concerted electron-proton transfer (EPT) to the peroxyl radical, whereas more electron-rich phenols and phenoxide anions react by multi-site EPT in which water acts as proton relay.
Magnolol and honokiol, the bioactive phytochemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kinh of 6.1 × 10(4) M(-1) s(-1) in chlorobenzene and 6.0 × 10(3) M(-1) s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (kinh = 3.8 × 10(4) M(-1) s(-1)) and four peroxyl radicals in acetonitrile (kinh = 9.5 × 10(3) M(-1) s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl π-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M(-1) s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.