A simultaneous treatment of lignocellulosic biomass (LCB) and low density oxodegradable polyethylene (LDPE oxo ) was carried-out using Pleurotus ostreatus at microcosm scale to obtain biotransformed plastic and oxidized lignocellulosic biomass. This product was used as raw matter (RM) to produce biochar enriched with phosphate solubilizing bacteria (PSB). Biochar potential as biofertilizer was evaluated in Allium cepa culture at greenhouse scale. Experiments including lignocellulosic mix and LDPE oxo were performed for 75 days in microcosm. Biotransformation progress was performed by monitoring total organic carbon (TOC), CO 2 production, laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) enzymatic activities. Physical LDPE oxo changes were assessed by atomic force microscopy (AFM), scanning electron microscopy (SEM) and static contact angle (SCA) and chemical changes by Fourier transform infrared spectroscopy (FTIR). Results revealed P . ostreatus was capable of LCB and LDPE oxo biotransformation, obtaining 41% total organic carbon (TOC) removal with CO 2 production of 2,323 mg Kg -1 and enzyme activities of 169,438 UKg -1 , 5,535 UKg -1 and 5,267 UKg -1 for LiP, MnP and Lac, respectively. Regarding LDPE oxo , SCA was decreased by 84%, with an increase in signals at 1,076 cm -1 and 3,271 cm -1, corresponding to C-O and CO-H bonds. A decrease in signals was observed related to material degradation at 2,928 cm -1 , 2,848 cm -1 , agreeing with CH 2 asymmetrical and symmetrical stretching, respectively. PSB enriched biochar favored A . cepa plant growth during the five-week evaluation period. To the best of our knowledge, this is the first report of an in vitro circular production model, where P . ostreatus was employed at a microcosmos level to bioconvert LCB and LDPE oxo residues from the agroindustrial sector, followed by thermoconversion to produce an enriched biochar with PSB to be used as a biofertilizer to grow A . cepa at greenhouse scale.
Different genus of bacteria has been reported with the capacity to solubilize phosphorus from phosphate rock (PR). Pseudomonas sp., (A18) and Serratia sp., (C7) isolated from soils at the “ Departamento de Boyacá ” Colombia, where Allium cepa is cultivated. Bacteria were cultured in MT11B media and evaluated as a bio-fertilizer for A. cepa germination and growth during two months at greenhouse scale. Pseudomonas sp., and Serratia sp., cultured at 30 °C, 48 h in SMRS1 agar modified with PR, (as an inorganic source of phosphorus), presented a phosphate solubilization index (SI) of 2.1 ± 0.2 and 2.0 ± 0.3 mm, respectively. During interaction assays no inhibition halos were observed, demonstrating there was no antagonism between them. In MT11B media growth curve (12 h) demonstrated that co-culture can grow in the presence of PR and glucose concentrations 7.5-fold, lower than in SMRS1 media and brewer's yeast hydrolysate; producing phosphatase enzymes with a volumetric activity of 1.3 ± 0.03 PU at 6 h of culture and 0.8 ± 0.04 PU at 12 h. Moreover, co-culture released soluble phosphorus at a rate of 58.1 ± 0.28 mg L −1 at 8 h and 88.1 ± 0.32 mg L −1 at 12 h. After five days of evaluation it was observed that germination percentage was greater than 90 % of total evaluated seeds, when placing them in contact with the co-culture in a concentration of 1 × 10 8 CFU mL −1 . Furthermore, it was demonstrated that co-culture application (10 mL per experimental unit to complete 160 mL in two months) at 8.0 Log 10 CFU mL −1 twice a week for two months increased A. cepa total dry weight (69 ± 13 mg) compared with total dry weight (38 ± 5.0 mg) obtained with the control with water.
Textile industries produce effluent wastewater that, if discharged, exerts a negative impact on the environment. Thus, it is necessary to design and implement novel wastewater treatment solutions. A sequential treatment consisting of ligninolytic co-culture with the fungi Pleurotus ostreatus and Phanerochaete crhysosporium (secondary treatment) coupled to TiO 2 /UV photocatalysis (tertiary treatment) was evaluated in the laboratory in order to discolor, detoxify, and reuse textile effluent wastewater in subsequent textile dyeing cycles. After 48 h of secondary treatment, up to 80 % of the color in the wastewater was removed and its chemical and biochemical oxygen demands (COD, and BOD 5 ) were abated in 92 % and 76 %, respectively. Laccase and MnP activities were central to color removal and COD and BOD 5 abatement, exhibiting activity values of 410 U L −1 and 1 428 U L −1 , respectively. Subjecting wastewater samples to 12 h of tertiary treatment led to an 86 % color removal and 73 % and 86 % COD and BOD 5 abatement, respectively. The application of a sequential treatment for 18 h improved the effectiveness of the wastewater treatment, resulting in 89 % of color removal, along with 81 % and 89 % COD and BOD 5 abatement, respectively. With this sequential treatment a bacterial inactivation of 55 % was observed. TiO 2 films were reused continuously during two consecutive treatment cycles without thermic reactivation. Removal percentages greater than 50 % were attained. Acute toxicity tests performed with untreated wastewater led to a lethality level of 100 % at 50 % in Hydra attenuata and to a growth inhibition of 54 % at 50 % in Lactuca sativa. Whereas sequentially treated wastewater excreted a 13 % lethality at 6.25 % and an inhibition of 12 % at 75 % for H. attenuata and L. sativa, respectively. Finally, sequentially treated wastewater was reused on dyeing experiments in which 0.86 mg g −1 adsorbed dye per g of fabric, that is equivalent to 80 % of dye adsorption. AM. A novel textile wastewater treatment using ligninolytic co-culture and photocatalysis with TiO 2,
Phosphorus (P) is an essential nutrient for plant’s development, and its deficiency restricts crop yield. To meet P requirements in agricultural settings, a low-cost culture medium (MT11B) was designed in which a bioinoculant was produced consisting of three bacterial isolates capable of solubilizing P from phosphoric rock (PR). Pseudomonas sp., Serratia sp., and Kosakonia sp. exhibited P solubilization in SMRS1 agar modified with PR (5.0 g L-1), as source of inorganic P. Sowings by isolation were made of the three bacteria on DNAse- and Blood-agar to rule out pathogenicity. At the interaction tests, no inhibition halos were observed; demonstrating there was no antagonism among them, thus they were used to constitute a consortium. Growth curve (12 h) in MT11B demonstrated consortium grew in presence of PR, brewer’s yeast hydrolysate, and glucose at concentrations (2.5 g L-1) fourfold lower than those in SMRS1 (10.0 g L-1); obtaining phosphate solubilizing bacteria of (10.60 ± 0.08/ log10 CFUmL-1 and, at 6 h of culture, acid and alkaline phosphatase enzyme volumetric activities of 2.3 ± 0.8 and (3.80 ± 0.13) UP, respectively. The consortium, releasing phosphorus at a rate of (45.80 ± 5.17) mg L-1 at 6 h of production, was evaluated as bioinoculant in onion plots for five months. Plants receiving a treatment that included 500 mL (10 x 107 CFU mL-1) of bioinoculant plus 100 kg ha-1 of an organic mineral fertilizer exhibited the highest determined response variables (170.1 ± 22.2) mm bulb height, (49.4 ± 6.5) mm bulb diameter, (9.0 ± 1.8) g bulb dry weight, and 15.21 mg bulb-1 total phosphorus (p < 0.05).
We produced and characterised biochar made from Caribbean pine sawdust as raw material. The biochar (BC500) was used as biocompatible support to co-inoculate phosphate solubilizing bacteria (PSB) (BC500/PSB) on Allium cepa L., plants at a greenhouse scale for four months. The three biomaterials study included proximate analysis, elemental analysis, aromaticity analysis, scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), adsorption studies at different pH and PSB stability as a function of time. The results indicated that BC500 is suitable as organic support or solid matrix to maintain the viability of PSB able to solubilise P from phosphate rock (PR). The biofertilizer (BC500/PSB) allows increasing germination, seedling growth, nutrient assimilation, and growth of Allium cepa L., because PSB immobilised on BC500 promoted nutrient mobilisation, particularly P, during cultivation of Allium cepa L., at pots scale. The two treatments to evaluate the biofertilizer (BC500/PSB) showed the highest concentrations of total P with 1.25 ± 0.13 and 1.38 ± 0.14 mg bulb−1 in A. cepa L. This work presents the benefits of a new product based on bacteria naturally associated with onion and an organic material (BC500) serving as a bacterial carrier that increases the adsorption area of highly reactive nutrients, reducing their leaching or precipitation with other nutrients and fixation to the solid matrix of the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.