Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.
The maintenance of chromosome termini, or telomeres, requires the action of the enzyme telomerase, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. Telomerase is expressed and telomere length is maintained in human germ cells and the great majority of primary human tumours. However, telomerase is not detectable in most normal somatic cells; this corresponds to the gradual telomere loss observed with each cell division. It has been proposed that telomere erosion eventually signals entry into senescence or cell crisis and that activation of telomerase is usually required for immortal cell proliferation. In addition to the human telomerase RNA component (hTR; ref. 11), TR1/TLP1 (refs 12, 13), a protein that is homologous to the p80 protein associated with the Tetrahymena enzyme, has been identified in humans. More recently, the human telomerase reverse transcriptase (hTRT; refs 15, 16), which is homologous to the reverse transcriptase (RT)-like proteins associated with the Euplotes aediculatus (Ea_p123), Saccharomyces cerevisiae (Est2p) and Schizosaccharomyces pombe (5pTrt1) telomerases, has been reported to be a telomerase protein subunit. A catalytic function has been demonstrated for Est2p in the RT-like class but not for p80 or its homologues. We now report that in vitro transcription and translation of hTRT when co-synthesized or mixed with hTR reconstitutes telomerase activity that exhibits enzymatic properties like those of the native enzyme. Single amino-acid changes in conserved telomerase-specific and RT motifs reduce or abolish activity, providing direct evidence that hTRT is the catalytic protein component of telomerase. Normal human diploid cells transiently expressing hTRT possessed telomerase activity, demonstrating that hTRT is the limiting component necessary for restoration of telomerase activity in these cells. The ability to reconstitute telomerase permits further analysis of its biochemical and biological roles in cell aging and carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.