Many ligands for the aryl hydrocarbon receptor (AhR) are considered endocrine disruptors and carcinogens, and assessment of adverse health effects in humans exposed to such chemicals has often focused on malignancies, including breast cancer. Mammary tissue contains the AhR, and inappropriate activation of the AhR during fetal development causes defects in mammary development that persist into adulthood. However, it is not known whether the extensive differentiation of mammary tissue that occurs during pregnancy is also sensitive to disruption by AhR activation. To examine this, we exposed pregnant C57Bl/6 mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on days 0, 7, and 14 of pregnancy. Examination of mammary glands on days 9, 12, and 17 of pregnancy and on the day of parturition showed severe defects in development, including stunted growth, decreased branching, and poor formation of lobular alveolar structures. This impaired differentiation was biologically significant, as expression of whey acidic protein in the gland was suppressed, and all pups born to TCDD-treated dams died within 24 h of birth. Analysis of circulating progesterone, prolactin, and estradiol suggest that hormone production was slightly impaired by inappropriate activation of the AhR. However, hormone levels were affected only very late in pregnancy. Given that the observed defects in gland development preceded these hormonal effects, altered hormone levels are an unlikely mechanistic explanation for impaired mammary development. This novel finding that AhR activation during pregnancy disrupts mammary gland differentiation raises questions about the susceptibility of mammary tissue to direct injury by endocrine disrupting agents and the potential for AhR-mediated signaling to adversely affect lactation and breast tissue development in human populations.
Unlike their role in bacterial infection, less is known about the role of neutrophils during pulmonary viral infection. Exposure to pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) results in excess neutrophils in the lungs of mice infected with influenza A virus. TCDD is the most potent agonist for the aryl hydrocarbon receptor (AhR), and exposure to AhR ligands has been correlated with exacerbated inflammatory lung diseases. However, knowledge of the effects of AhR agonists on neutrophils is limited. Likewise, the factors regulating neutrophil responses during respiratory viral infections are not well characterized. To address these knowledge gaps, we determined the in vivo levels of KC, MIP-1alpha, MIP-2, LIX, IL-6, and C5a in infected mouse lungs. Our data show that these neutrophil chemoattractants are generally produced transiently in the lung within 12-24 h of infection. We also report that expression of CD11a, CD11b, CD49d, CD31, and CD38 is increased on pulmonary neutrophils in response to influenza virus. Using AhR-deficient mice, we demonstrate that excess neutrophilia in the lung is mediated by activation of the AhR and that this enhanced neutrophilia correlates directly with decreased survival in TCDD-exposed mice. Although AhR activation results in more neutrophils in the lungs, we show that this is not mediated by deregulation in levels of common neutrophil chemoattractants, expression of adhesion molecules on pulmonary neutrophils, or delayed death of neutrophils. Likewise, exposure to TCDD did not enhance pulmonary neutrophil function. This study provides an important first step in elucidating the mechanisms by which AhR agonists exacerbate pulmonary inflammatory responses.
Background: Diagnosis of central nervous system (CNS) abnormalities in dogs can be challenging antemortem. Historically, cerebrospinal fluid (CSF) analysis has been used for routine diagnostic evaluation of animals with suspected neurologic disease; however, with increasing availability of magnetic resonance (MR) imaging, the need for concurrent CSF analysis may be questioned. Objective: The purpose of this study was to retrospectively assess and compare the diagnostic information contributed from MR imaging and CSF analysis in a population of dogs presenting with neurologic disease. Methods: Results of concurrent MR imaging and CSF analysis were evaluated in dogs presented for neurologic diseases. Based on clinical diagnosis, the sensitivity of CSF analysis and MR imaging for detecting a nervous system abnormality was calculated. Dogs with diagnoses confirmed by other diagnostic modalities were also evaluated separately. Results: A total of 256 dogs were included in the study. For clinical diagnoses in which abnormalities were expected, MR imaging abnormalities were found in 89% and CSF abnormalities in 75% of dogs; CSF abnormalities were more common than MR imaging abnormalities only in inflammatory CNS disease. The majority of CSF abnormalities were nonspecific; an etiologic diagnosis was determined in only 2% of CSF samples. MR imaging excelled in detecting structural disorders, revealing 98% of vertebral abnormalities. In confirmed cases (n555), 76% of MR images and 9% of CSF samples were diagnostic. When intervertebral disk disease (IVDD) and vertebral malformation were excluded from analysis (n516 remaining), 25% of MR images and 6% of CSF cytology results were highly indicative of the confirmed diagnoses; CSF titer results provided the diagnosis in 25% of these cases. Conclusion: CSF analysis may not be necessary when MR findings of IVDD or vertebral malformation/instability are obvious; however, when the cause of neurologic disorder is uncertain, concurrent MR imaging and CSF analysis provides the greatest assistance in establishing a clinical diagnosis. (Vet Clin Pathol. 2006;35:315-320)
ALP expression detected using BCIP/NBT substrate applied to previously stained cells is useful in differentiating canine OSA from other mesenchymal neoplasms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.