Perception capability assumes significant importance for human–robot interaction. The forthcoming industrial environments will require a high level of automation to be flexible and adaptive enough to comply with the increasingly faster and low-cost market demands. Autonomous and collaborative robots able to adapt to varying and dynamic conditions of the environment, including the presence of human beings, will have an ever-greater role in this context. However, if the robot is not aware of the human position and intention, a shared workspace between robots and humans may decrease productivity and lead to human safety issues. This paper presents a survey on sensory equipment useful for human detection and action recognition in industrial environments. An overview of different sensors and perception techniques is presented. Various types of robotic systems commonly used in industry, such as fixed-base manipulators, collaborative robots, mobile robots and mobile manipulators, are considered, analyzing the most useful sensors and methods to perceive and react to the presence of human operators in industrial cooperative and collaborative applications. The paper also introduces two proofs of concept, developed by the authors for future collaborative robotic applications that benefit from enhanced capabilities of human perception and interaction. The first one concerns fixed-base collaborative robots, and proposes a solution for human safety in tasks requiring human collision avoidance or moving obstacles detection. The second one proposes a collaborative behavior implementable upon autonomous mobile robots, pursuing assigned tasks within an industrial space shared with human operators.
This paper explains how to associate a rigorous probability value to the main straight line features extracted from a digital image. A Bayesian approach to the Hough Transform (HT) is considered. Under general conditions, it is shown that a probability measure is associated to each line extracted from the HT. The proposed method increments the HT accumulator in a probabilistic way: first calculating the uncertainty of each edge point in the image and then using a Bayesian probabilistic scheme for fusing the probability of each edge point and calculating the line feature probability.
The prospect and potentiality of interfacing minds with machines has long captured human imagination. Recent advances in biomedical engineering, computer science, and neuroscience are making brain–computer interfaces a reality, paving the way to restoring and potentially augmenting human physical and mental capabilities. Applications of brain–computer interfaces are being explored in applications as diverse as security, lie detection, alertness monitoring, gaming, education, art, and human cognition augmentation. The present tutorial aims to survey the principal features and challenges of brain–computer interfaces (such as reliable acquisition of brain signals, filtering and processing of the acquired brainwaves, ethical and legal issues related to brain–computer interface (BCI), data privacy, and performance assessment) with special emphasis to biomedical engineering and automation engineering applications. The content of this paper is aimed at students, researchers, and practitioners to glimpse the multifaceted world of brain–computer interfacing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.