We consider the Boltzmann operator for mixtures with cutoff Maxwellian, hard potentials, or hard spheres collision kernels. In a perturbative regime around the global Maxwellian equilibrium, the linearized Boltzmann multi-species operator L is known to possess an explicit spectral gap λ L , in the global equilibrium weighted L 2 space. We study a new operator L ε obtained by linearizing the Boltzmann operator for mixtures around local Maxwellian distributions, where all the species evolve with different small macroscopic velocities of order ε, ε > 0. This is a non-equilibrium state for the mixture. We establish a quasi-stability property for the Dirichlet form of L ε in the global equilibrium weighted L 2 space. More precisely, we consider the explicit upper bound that has been proved for the entropy production functional associated to L and we show that the same estimate holds for the entropy production functional associated to L ε , up to a correction of order ε.
In this article, we consider a multi‐species kinetic model which leads to the Maxwell–Stefan equations under a standard diffusive scaling (small Knudsen and Mach numbers). We propose a suitable numerical scheme which approximates both the solution of the kinetic model in rarefied regime and the one in the diffusion limit. We prove some a priori estimates (mass conservation and nonnegativity) and well‐posedness of the discrete problem. We also present numerical examples where we observe the asymptotic‐preserving behavior of the scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.