The overall and detailed elucidation (including the stereochemical aspects) of enzymatic mechanisms requires the access to all reliable information related to the natural isotopic fractionation of both precursors and products. Natural abundance deuterium (NAD) 2D-NMR experiments in polypeptide liquid-crystalline solutions are a new, suitable tool for analyzing site-specific deuterium isotopic distribution profiles. Here this method is utilized for analyzing saturated C14 to C18 fatty acid methyl esters (FAMEs), which are challenging because of the crowding of signals in a narrow spectral region. Experiments in achiral and chiral oriented solutions were performed. The spectral analysis is supplemented by the theoretical prediction of quadrupolar splittings as a function of the geometry and flexibility of FAMEs, based on a novel computational methodology. This allows us to confirm the spectral assignments, while providing insights into the mechanism of solute ordering in liquid-crystalline polypeptide solutions. This is found to be dominated by steric repulsions between FAMEs and polypeptides.
Many transition-metal complexes easily change their spin state S in response to external perturbations (spin crossover). Determining such states and their dynamics can play a central role in the understanding of useful properties such as molecular magnetism or catalytic behavior, but is often far from straightforward. In this work we demonstrate that, at a moderate computational cost, density functional calculations can predict the correct ground spin state of Fe(ii) and Fe(iii) complexes and can then be used to determine the (1)H NMR spectra of all spin states. Since the spectral features are remarkably different according to the spin state, calculated (1)H NMR resonances can be used to infer the correct spin state, along with supporting the structure elucidation of numerous paramagnetic complexes.
Carta, M. et. al. (2019). Thin film composite membranes based on a polymer of intrinsic microporosity derived from Tröger's base: A combined experimental and computational investigation of the role of residual casting solvent.
The relative energies of spin states of several iron(IV)-oxo complexes and related species have been calculated with DFT methods by employing the B3LYP* functional. We show that such calculations can predict the correct ground spin state of Fe(IV) complexes and can then be used to determine the (1) H NMR spectra of all spin states; the spectral features are remarkably different, hence calculated paramagnetic (1) H NMR spectra can be used to support the structure elucidation of numerous paramagnetic complexes. Applications to a number of stable and reactive iron(IV)-oxo species are described.
SH3 domains are probably the most abundant molecular-recognition modules of the proteome. A common feature of these domains is their interaction with ligand proteins containing Pro-rich sequences. Crystal and NMR structures of SH3 domains complexes with Pro-rich peptides show that the peptide ligands are bound over a range of up to seven residues in a PPII helix conformation. Short proline-rich peptides usually adopt little or no ordered secondary structure before binding interactions, and consequently their association with the SH3 domain is characterized by unfavorable binding entropy due to a loss of rotational freedom on forming the PPII helix. With the aim to stabilize the PPII helix conformation into the proline-rich decapeptide PPPLPPKPKF (P2), we replaced some proline residues either with the 4(R)-4-fluoro-L-proline (FPro) or the 4(R)-4-hydroxy-L-proline (Hyp). The interactions of P2 analogues with the SH3 domain of cortactin (SH3(m-cort)) were analyzed by circular dichroism spectroscopy, while CD thermal transition experiments have been used to determine their propensity to adopt a PPII helix conformation. Results show that the introduction of three residues of Hyp efficiently stabilizes the PPII helix conformation, while it does not improve the affinity towards the SH3 domain, suggesting that additional forces, e.g., electrostatic interactions, are involved in the SH3(m-cort) substrate recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.