Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), an invasive phloem-feeding pest, was identified as the cause of widespread ash (Fraxinus) mortality in southeast Michigan and Windsor, Ontario, Canada, in 2002. A. planipennis reportedly colonizes other genera in its native range in Asia, including Ulmus L., Juglans L., and Pterocarya Kunth. Attacks on nonash species have not been observed in North America to date, but there is concern that other genera could be colonized. From 2003 to 2005, we assessed adult A. planipennis landing rates, oviposition, and larval development on North American ash species and congeners of its reported hosts in Asia in multiple-choice field studies conducted at several southeast Michigan sites. Nonash species evaluated included American elm (U. americana L.), hackberry (Celtis occidentalis L.), black walnut (J. nigra L.), shagbark hickory [Carya ovata (Mill.) K.Koch], and Japanese tree lilac (Syringa reticulata Bl.). In studies with freshly cut logs, adult beetles occasionally landed on nonash logs but generally laid fewer eggs than on ash logs. Larvae fed and developed normally on ash logs, which were often heavily infested. No larvae were able to survive, grow, or develop on any nonash logs, although failed first-instar galleries occurred on some walnut logs. High densities of larvae developed on live green ash and white ash nursery trees, but there was no evidence of larval survival or development on Japanese tree lilac and black walnut trees in the same plantation. We felled, debarked, and intensively examined >28 m2 of phloem area on nine American elm trees growing in contact with or adjacent to heavily infested ash trees. We found no sign of A. planipennis feeding on any elm.
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash (Fraxinus sp.) trees in North America since its discovery in Michigan in 2002. Efficient methods to detect low-density A. planipennis populations remain a critical priority for regulatory and resource management agencies. We compared the density of adult A. planipennis captured on sticky bands and larval density among ash trees that were girdled for 1 or 2 yr, wounded, exposed to the stress-elicitor methyl jasmonate, baited with Manuka oil lures, or left untreated. Studies were conducted at four sites in 2006 and 2007, where A. planipennis densities on untreated trees ranged from very low to moderate. In 2006, 1-yr girdled trees captured significantly more adult A. planipennis and had higher larval densities than untreated control trees or trees treated with methyl jasmonate or Manuka oil. Open-grown trees captured significantly more A. planipennis beetles than partially or fully shaded trees. In 2007, A. planipennis population levels and captures of adult A. planipennis were substantially higher than in 2006. The density of adults captured on sticky bands did not differ significantly among canopy exposure classes or treatments in 2007. Larval density was significantly higher in untreated, wounded, and 1-yr girdled trees (girdled in 2007) than in 2-yr girdled trees (girdled in 2006), where most phloem was consumed by A. planipennis larvae the previous year. A total of 36 trees (32 in 2006, 4 in 2007) caught no beetles, but 16 of those trees (13 in 2006, 3 in 2007) had A. planipennis larvae. In 2006, there was a positive linear relationship between the density of adults captured on sticky bands and larval density in trees. Our results show that freshly girdled and open grown trees were most attractive to A. planipennis, especially at low-density sites. If girdled trees are used for A. planipennis detection or survey, debarking trees to locate larval galleries is crucial.
Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002. We evaluated attraction of adult A. planipennis to artificial traps incorporating visual (e.g., height, color, silhouette) and olfactory cues (e.g., host volatiles) at field sites in Michigan. We developed a double-decker trap consisting of a 3-m-tall polyvinyl pipe with two purple prisms attached near the top. In 2006, we compared A. planipennis attraction to double-decker traps baited with various combinations of manuka oil (containing sesquiterpenes present in ash bark), a blend of four ash leaf volatiles (leaf blend), and a rough texture to simulate bark. Significantly more A. planipennis were captured per trap when traps without the rough texture were baited with the leaf blend and manuka oil lures than on traps with texture and manuka oil but no leaf blend. In 2007, we also tested single prism traps set 1.5 m above ground and tower traps, similar to double-decker traps but 6 m tall. Double-decker traps baited with the leaf blend and manuka oil, with or without the addition of ash leaf and bark extracts, captured significantly more A. planipennis than similarly baited single prism traps, tower traps, or unbaited double-decker traps. A baited double-decker trap captured A. planipennis at a field site that was not previously known to be infested, representing the first detection event using artificial traps and lures. In 2008, we compared purple or green double-decker traps, single prisms suspended 3-5 m above ground in the ash canopy (canopy traps), and large flat purple traps (billboard traps). Significantly more A. planipennis were captured in purple versus green traps, baited traps versus unbaited traps, and double-decker versus canopy traps, whereas billboard traps were intermediate. At sites with very low A. planipennis densities, more A. planipennis were captured on baited double-decker traps than on other traps and a higher percentage of the baited double-decker traps captured beetles than any other trap design. In all 3 yr, peak A. planipennis activity occurred during late June to mid-July, corresponding to 800-1200 growing degree-days base 10 degrees C (DD10). Nearly all (95%) beetles were captured by the end of July at approximately 1400 DD10.
We assessed density of emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) larvae over a 6-yr period by felling and sampling a total of 315 green ash (Fraxinus pennsylvanica Marsh.) trees that were left untreated or treated with imidacloprid, dinotefuran, or emamectin benzoate products at 1-yr, 2-yr, or 3-yr intervals. Our study, conducted across a 32-ha forested area, began soon after emerald ash borer became established and continued through the peak and eventual decline of the emerald ash borer population. Less than half of the 96 trees in the pretreatment sample were infested and larval densities were very low. Densities of emerald ash borer remained low for 3 yr, then increased exponentially, eventually resulting in mortality of most untreated overstory ash. Trees treated with either low or moderate rates of emamectin benzoate applied via trunk injection had few or no emerald ash borer galleries, even 3 yr post-treatment. Basal trunk sprays of dinotefuran applied annually were also effective at preventing larval densities from reaching damaging levels. Average larval densities on trees treated with a trunk injection of imidacloprid were lower but did not differ from untreated trees, regardless of treatment frequency. Larval parasitism was rare, while woodpecker predation was common and accounted for nearly all natural larval mortality, even on trees with very low densities of larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.