Our findings are consistent with previous reports that homozygous mutations in FTO can lead to rare growth retardation and developmental delay syndrome, and further support the proposal that FTO plays an important role in early development of human central nervous and cardiovascular systems.
Isolated 7p22.3p22.2 deletions are rarely described with only two reports in the literature. Most other reported cases either involve a much larger region of the 7p arm or have an additional copy number variation. Here, we report five patients with overlapping microdeletions at 7p22.3p22.2. The patients presented with variable developmental delays, exhibiting relative weaknesses in expressive language skills and relative strengths in gross, and fine motor skills. The most consistent facial features seen in these patients included a broad nasal root, a prominent forehead a prominent glabella and arched eyebrows. Additional variable features amongst the patients included microcephaly, metopic ridging or craniosynostosis, cleft palate, cardiac defects, and mild hypotonia. Although the patients' deletions varied in size, there was a 0.47 Mb region of overlap which contained 7 OMIM genes: EIP3B, CHST12, LFNG, BRAT1, TTYH3, AMZ1, and GNA12. We propose that monosomy of this region represents a novel microdeletion syndrome. We recommend that individuals with 7p22.3p22.2 deletions should receive a developmental assessment and a thorough cardiac exam, with consideration of an echocardiogram, as part of their initial evaluation.
Background
The Canadian Inherited Metabolic Diseases Research Network (CIMDRN) is a pan-Canadian practice-based research network of 14 Hereditary Metabolic Disease Treatment Centres and over 50 investigators. CIMDRN aims to develop evidence to improve health outcomes for children with inherited metabolic diseases (IMD). We describe the development of our clinical data collection platform, discuss our data quality management plan, and present the findings to date from our data quality assessment, highlighting key lessons that can serve as a resource for future clinical research initiatives relating to rare diseases.
Methods
At participating centres, children born from 2006 to 2015 who were diagnosed with one of 31 targeted IMD were eligible to participate in CIMDRN’s clinical research stream. For all participants, we collected a minimum data set that includes information about demographics and diagnosis. For children with five prioritized IMD, we collected longitudinal data including interventions, clinical outcomes, and indicators of disease management. The data quality management plan included: design of user-friendly and intuitive clinical data collection forms; validation measures at point of data entry, designed to minimize data entry errors; regular communications with each CIMDRN site; and routine review of aggregate data.
Results
As of June 2019, CIMDRN has enrolled 798 participants of whom 764 (96%) have complete minimum data set information. Results from our data quality assessment revealed that potential data quality issues were related to interpretation of definitions of some variables, participants who transferred care across institutions, and the organization of information within the patient charts (e.g., neuropsychological test results). Little information was missing regarding disease ascertainment and diagnosis (e.g., ascertainment method – 0% missing).
Discussion
Using several data quality management strategies, we have established a comprehensive clinical database that provides information about care and outcomes for Canadian children affected by IMD. We describe quality issues and lessons for consideration in future clinical research initiatives for rare diseases, including accurately accommodating different clinic workflows and balancing comprehensiveness of data collection with available resources. Integrating data collection within clinical care, leveraging electronic medical records, and implementing core outcome sets will be essential for achieving sustainability.
Iron-sulfur cluster proteins are involved in critical functions for gene expression regulation and mitochondrial bioenergetics including the oxidative phosphorylation system. The c.215G>A p.(Arg72Gln) variant in NFS1 has been previously reported to cause infantile mitochondrial complex II and III deficiency. We describe three additional unrelated patients with the same missense variant. Two infants with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.