There are seven confirmed hepatitis C virus (HCV) genotypes, with whole-genome nucleotide sequences differing by Ͼ30%, and each can be further subdivided into related subtypes (67 confirmed), with nucleotide sequence divergence of between 15% and 30% (1).Genotype identification has long been used in clinical practice, because major genotypes have different response rates and require different doses and durations of pegylated interferon and ribavirin (PR) treatment. In contrast, until recently, subtype identification was mainly used in epidemiological studies. However, both in vitro studies and clinical trials with different classes of direct-acting antiviral (DAA) agents (NS3 protease, NS5A-, and nucleos[t]ide and nonnucleos[t]ide NS5B-polymerase inhibitors), given with PR or in interferon-free combinations, have shown lower response rates for HCV genotype 1a than for HCV genotype 1b (2-8). Moreover, at least for HCV genotype 1, both the frequency and the pattern of resistance to different DAA classes are subtype specific (9). A striking example is the NS3-Q80K polymorphism, naturally found in Ͼ30% of naive subtype 1a patients but in Ͻ1% of subtype 1b patients (10), which conveys 30%-to-40%-lower sustained-virologic-response (SVR) rates to the macrocyclic protease inhibitor simeprevir (2). Similarly, all subtype 1g sequences identified naturally carry a mutation conferring resistance to linear NS3 protease inhibitors (11).Subtype-specific differences in the genetic barrier to resistance appear to correlate to the RNA-dependent RNA polymerase mu-
Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and consequent mitochondrial dysfunction in affected tissues. A subgroup of MDS is caused by mutations in genes that disrupt deoxyribonucleotide metabolism, which ultimately leads to limited availability of one or several deoxyribonucleoside triphosphates (dNTPs), and subsequent mtDNA depletion. Here, using in vitro experimental approaches (primary cell culture of deoxyguanosine kinase-deficient cells and thymidine-induced mtDNA depletion in culture as a model of mitochondrial neurogastrointestinal encephalomyopathy, MNGIE), we show that supplements of those deoxyribonucleosides (dNs) involved in each biochemical defect (deoxyguanosine or deoxycytidine, dCtd) prevents mtDNA copy number reduction. Similar effects can be obtained by specific inhibition of dN catabolism using tetrahydrouridine (THU; inhibitor of cytidine deaminase) or immucillin H (inhibitor of purine nucleoside phosphorylase). In addition, using an MNGIE animal model, we provide evidence that mitochondrial dNTP content can be modulated in vivo by systemic administration of dCtd or THU. In spite of the severity associated with diseases due to defects in mtDNA replication, there are currently no effective therapeutic options available. Only in the case of MNGIE, allogeneic hematopoietic stem cell transplantation has proven efficient as a long-term therapeutic strategy. We propose increasing cellular availability of the deficient dNTP precursor by direct administration of the dN or inhibition of its catabolism, as a potential treatment for mtDNA depletion syndrome caused by defects in dNTP metabolism.
ObjectivesThe aim of the study was to assess the seroprevalence of hepatitis E virus (HEV) infection in an HIV-infected population, as determined by HEV immunoglobulin G (IgG) antibodies (anti-HEV). MethodsThe design of the study was cross-sectional. Serum anti-HEV IgG was determined by enzyme immunoassay in 238 HIV-infected patients consecutively attending our out-patient clinic between April and May 2011. In HEV-seropositive patients, HEV RNA was analysed by nested reverse transcriptase-polymerase chain reaction (RT-PCR). Associations between anti-HEV and liver cirrhosis, route of HIV infection, hepatitis B virus (HBV) and hepatitis C virus (HCV) serological markers, age, sex and alanine aminotransferase (ALT) levels were examined by univariate and multivariate analysis. ResultsOne hundred and forty patients (59%) had chronic liver disease (99% were HBV-and/or HCV-coinfected). Liver cirrhosis was detected in 44 individuals (19%). Two hundred and twelve patients (89%) were on antiretroviral treatment; the median CD4 T-cell count was 483 cells/mL [interquartile range (IQR) 313-662 cells/mL] and the HIV viral load was < 25 HIV-1 RNA copies/mL. Overall, 22 patients (9%) were anti-HEV positive. Liver cirrhosis was the only factor independently associated with the presence of anti-HEV, which was documented in 23% of patients with cirrhosis and 6% of patients without cirrhosis (P = 0.002; odds ratio 5.77). HEV RNA was detected in three seropositive patients (14%), two of whom had liver cirrhosis. ConclusionsOur findings show a high prevalence of anti-HEV in HIV-infected patients, strongly associated with liver cirrhosis. Chronic HEV infection was detected in a significant number of HEV-seropositive patients. Further research is needed to ascertain whether cirrhosis is a predisposing factor for HEV infection and to assess the role of chronic HEV infection in the pathogeneses of cirrhosis in this population.
Time is the main variable affecting stability in medical laboratory samples. Bibliographic studies differ in recommedations of stability limits mainly because of different specifications for maximum allowable error. Definition of a consensus stability function in specific conditions can help laboratories define stability limits using their own quality specifications.
AimTo evaluate HBV quasispecies (QA) complexity in the preCore/Core regions in relation to HBeAg status, and explore QA changes under natural evolution and nucleoside analogue (NUC) treatment.MethodsUltra-deep pyrosequencing of HBV preCore/Core regions in 30 sequential samples (baseline [diagnosis], treatment-free, and treatment-nonresponse) from 10 retrospectively selected patients grouped according to HBeAg status over time: HBeAg+ (N = 4), HBeAg- (N = 2), and fluctuating HBeAg (transient seroreversion/seroconversion pattern) (N = 4). QA complexity was defined by Shannon entropy, mutation frequency, nucleotide diversity, and mutation frequency of amino acids (MfAA) in preCore and Core.ResultsThe QA was less complex in HBeAg+ than in HBeAg- or fluctuating HBeAg. High complexity in preCore was associated with decreased viral replication (preCore MfAA negatively correlated with HBV-DNA, p = 0.005). QA complexity in the treatment-free period negatively correlated with values seen during treatment. Specific variants were mainly selected in the Core region in HBeAg- and fluctuating HBeAg patients, suggesting higher immune pressure than in HBeAg+.ConclusionsThe negative correlation between QA natural evolution and on-treatment evolution indicates the importance of pre-treatment QA study to predict QA changes in NUC nonresponders. Study of QA complexity could be useful for managing HBV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.