Digital Twin (DT) is considered a key approach to enhance the system reactivity to uncertain events due to its ability to getting data from the field and triggering actions on the physical asset. Given the modern technological and rapidly changing work environment, it is likely that in the next years companies will need to retrofit their manufacturing systems by integrating DTs. In this context, it is fundamental to define the necessary steps for the development of DTs and for their integration into manufacturing systems through a DT architecture. In response to this issue, a methodology based on Virtual Commissioning is proposed. A stepwise approach is illustrated in which the DT is designed, integrated and verified using a virtual environment. The methodology is validated through the integration of a DT into a flow shop for the implementation of a scheduling reactive to machine breakdown. By following the steps of the proposed methodology, a DT architecture able to improve the makespan of the studied flow shop is developed, suggesting the potential applicability of the approach to industrial manufacturing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.