Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best‐studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox‐active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post‐translational protein modification. Thus, protein–quinone modification is a heterogeneous process involving multiple DA‐derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.
In the substantia nigra of human brain, neuromelanin (NM) released by degenerating neurons can activate microglia with consequent neurodegeneration, typical of Parkinson's disease (PD). Synthetic analogues of NM were prepared to develop a PD model reproducing the neuropathological conditions of the disease. Soluble melanin-protein conjugates were obtained by melanization of fibrillated β-lactoglobulin (fLG). The melanic portion of the conjugates contains either eumelanic (EufLG) or mixed eumelanic/pheomelanic composition (PheofLG), the latter better simulating natural NMs. In addition, the conjugates can be loaded with controlled amounts of iron. Upon melanization, PheofLG-Fe conjugates maintain the amyloid cross-β protein core as the only structurally organized element, similarly to human NMs. The similarity in composition and structural organization with the natural pigment is reflected by the ability of synthetic NMs to activate microglia, showing potential of the novel conjugates to model NM induced neuroinflammation. Thus, synthetic NM/microglia constitute a new model to develop anti-Parkinson drugs.
Neuromelanins are compounds accumulating in neurons of human and animal brain during aging, with neurons of substantia nigra and locus coeruleus having the highest levels of neuromelanins. These compounds have melanic, lipid, peptide, and inorganic components and are contained inside special autolysosomes. Neuromelanins can participate in neuroprotective or toxic processes occurring in Parkinson's disease according to cellular environment.Their synthesis depends on the concentration of cytosolic catechols and is a protective process since it prevents the toxic accumulation of catechols-derived reactive compounds. Neuromelanins can be neuroprotective also by binding reactive/toxic metals to produce stable and non-toxic complexes. Extraneuronal neuromelanin released by dying dopamine neurons in Parkinson's disease activates microglia which generate reactive oxygen species, reactive nitrogen species, and proinflammatory molecules, thus producing still neuroinflammation and neuronal death. Synthetic neuromelanins have been prepared with melanic, protein structure, and metal content closely mimicking the natural brain pigment, and these models are also able to activate microglia.Neuromelanins have different structure, synthesis, cellular/subcellular distribution, and role than melanins of hair, skin, and other tissues. The main common aspect between brain neuromelanin and peripheral melanin is the presence of eumelanin and/or pheomelanin moieties in their structure.
Neuromelanin (NM) accumulates in catecholamine long-lived brain neurons that are lost in neurodegenerative diseases. NM is a complex substance made of melanic, peptide and lipid components. NM formation is a natural protective process since toxic endogenous metabolites are removed during its formation and as it binds excess metals and xenobiotics. However, disturbances of NM synthesis and function could be toxic. Here, we review recent knowledge on NM formation, toxic mechanisms involving NM, go over NM binding substances and suggest experimental models that can help identifying xenobiotic modulators of NM formation or function. Given the high likelihood of a central NM role in age-related human neurodegenerative diseases such as Parkinson’s and Alzheimer’s, resembling such diseases using animal models that do not form NM to a high degree, e.g., mice or rats, may not be optimal. Rather, use of animal models (i.e., sheep and goats) that better resemble human brain aging in terms of NM formation, as well as using human NM forming stem cellbased in vitro (e.g., mid-brain organoids) models can be more suitable. Toxicants could also be identified during chemical synthesis of NM in the test tube.
Dopamin (DA) ist das wichtigste und häufigste Catecholamin im Gehirn und zugleich Vorläufer anderer Neurotransmitter. Die Degeneration von Neuronen des Nigrostriatums (Substantia nigra, Pars compacta) bei Parkinson‐Kranken ist die am besten untersuchte Verknüpfung zwischen Neurotransmission und Neuropathologie durch DA. Catecholamine sind reaktive Moleküle, für die es komplexe Kontroll‐ und Transportsysteme gibt. Unter normalen Bedingungen werden kleine Mengen cytosolischen Dopamins unter Melanisierung von Peptiden und Proteinen schrittweise zu Neuromelanin umgewandelt. Überschießendes cytosolisches oder extraneuronales DA kann allerdings unselektive Proteinmodifikationen auslösen. Die dabei ablaufende Oxidation von DA zu Chinonverbindungen hängt von der Gegenwart redoxaktiver Übergangsmetallionen wie Eisen und Kupfer ab. Auch andere oxidierte DA‐Metaboliten sind wahrscheinlich an posttranslationalen Proteinmodifikationen beteiligt. Die Protein‐Chinonmodifikation ist also ein heterogener Vorgang mit verschiedenen DA‐Abkömmlingen, die Struktur‐ und Konformationsänderungen von Proteinen hervorrufen; dies kann zur Aggregation und Inaktivierung der modifizierten Proteine führen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.