Speech recognition models are highly susceptible to mismatch in the acoustic and language domains between the training and the evaluation data. For low resource languages, it is difficult to obtain transcribed speech for target domains, while untranscribed data can be collected with minimal effort. Recently, a method applying lattice-free maximum mutual information (LF-MMI) to untranscribed data has been found to be effective for semi-supervised training. However, weaker initial models and domain mismatch can result in high deletion rates for the semi-supervised model. Therefore, we propose a method to force the base model to overgenerate possible transcriptions, relying on the ability of LF-MMI to deal with uncertainty. On data from the IARPA MATERIAL programme, our new semi-supervised method outperforms the standard semisupervised method, yielding significant gains when adapting for mismatched bandwidth and domain.
We propose a method for zero-resource domain adaptation of DNN acoustic models, for use in low-resource situations where the only in-language training data available may be poorly matched to the intended target domain. Our method uses a multi-lingual model in which several DNN layers are shared between languages. This architecture enables domain adaptation transforms learned for one well-resourced language to be applied to an entirely different lowresource language. First, to develop the technique we use English as a well-resourced language and take Spanish to mimic a low-resource language. Experiments in domain adaptation between the conversational telephone speech (CTS) domain and broadcast news (BN) domain demonstrate a 29% relative WER improvement on Spanish BN test data by using only English adaptation data. Second, we demonstrate the effectiveness of the method for low-resource languages with a poor match to the well-resourced language. Even in this scenario, the proposed method achieves relative WER improvements of 18-27% by using solely English data for domain adaptation. Compared to other related approaches based on multi-task and multi-condition training, the proposed method is able to better exploit well-resource language data for improved acoustic modelling of the low-resource target domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.