BackgroundDespite the fact that most vitamins are present in a variety of foods, malnutrition, unbalanced diets or insufficient intake of foods are still the cause of vitamin deficiencies in humans in some countries. Vitamin B12 (Cobalamin) is a complex compound that is only naturally produced by bacteria and archea. It has been reported that certain strains belonging to lactic acid bacteria group are capable of synthesized water-soluble vitamins such as those included in the B-group, as vitamin B12. In this context, the goal of the present paper was to evaluate and characterize the production of vitamin B12 in Lactobacillus coryniformis CRL 1001, a heterofermentative strain isolated from silage.ResultsCell extract of L. coryniformis CRL 1001, isolated from silage, is able to correct the coenzyme B12 requirement of Salmonella enterica serovar Typhimurium AR 2680 in minimal medium. The chemical characterization of the corrinoid-like molecule isolated from CRL 1001 cell extract using HPLC and mass spectrometry is reported. The majority of the corrinoid produced by this strain has adenine like Coα-ligand instead 5,6-dimethylbenzimidazole. Genomic studies revealed the presence of the complete machinery of the anaerobic biosynthesis pathway of coenzyme B12. The detected genes encode all proteins for the corrin ring biosynthesis and for the binding of upper (β) and lower (α) ligands in one continuous stretch of the chromosome.ConclusionsThe results here described show for the first time that L. coryniformis subsp. coryniformis CRL 1001 is able to produce pseudocobalamin containing adenine instead of 5,6-dimethlbenzimidazole in the Coα-ligand. Genomic analysis allowed the identification and characterization of the complete de novo biosynthetic pathway of the corrinoid produced by the CRL 1001 strain.
Vitamin B12 or cobalamin is an essential metabolite for humans, which makes it an interesting compound for many research groups that focus in different producer-strains synthesis pathways. In this work, we report the influence of key intermediaries for cobalamin synthesis added to the culture medium in two Lactobacillus (L.) strains, L. reuteri CRL 1098 and L. coryniformis CRL 1001. Here, we report that addition of Co2+ and 5,6-dimethylbenzimidazole increased the corrinoid compounds production in both strains while addition of L-threonine increased only the corrinoid compounds production by CRL 1001 strain. Then, we purified and characterized by LC-MS the corrinoid compounds obtained. Physiological studies besides in silico analysis revealed that L. reuteri CRL 1098 and L. coryniformis CRL 1001 follow different pathways for the last steps of the corrinoid compounds synthesis.
We report here the draft genome sequence of Lactobacillus reuteri strain CRL 1098. This strain represents an interesting candidate for functional food development because of its proven probiotic properties. The draft genome sequence is composed of 1,969,471 bp assembled into 45 contigs and an average G+C content of 38.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.