In this study, the apoptosis inducing effects of baltergin as well as its influence on cell adhesion and migration on muscles cells in vitro were studied. Morphological analysis made by scanning electron and phase contrast microscopy demonstrated typical futures of programmed cell death, apoptosis. This mechanism was confirmed by fluorescence staining, molecular analysis of endonuclease activity and increased mRNA expression level of two representative genes (p53 and bax). On the other hand, baltergin exert an inhibition effect on myoblast cell adhesion and migration in vitro probably through a mechanism that involves the interaction of this enzyme with cell integrins. In conclusion, our results suggest that the absence of appropriate extracellular matrix contacts triggers anoikis. Therefore, this is the first report that demonstrated the mechanism of programmed cell death triggered by baltergin, a PIII metalloprotease isolated from Bothrops alternatus venom, in a myoblast cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.