Data from human clinical trials have shown that the hepatitis B virus (HBV) follows complex profiles, such as bi-phasic, tri-phasic, stepwise decay and rebound. We utilized a deterministic model of HBV kinetics following antiviral therapy to uncover the mechanistic interactions behind HBV dynamics. Analytical investigation of the model was used to separate the parameter space describing virus decay and rebound. Monte Carlo sampling of the parameter space was used to determine the virological, pharmacological and immunological factors that separate the bi-phasic and tri-phasic virus profiles. We found that the level of liver infection at the start of therapy best separates the decay patterns. Moreover, drug efficacy, ratio between division of uninfected and infected cells, and the strength of cytotoxic immune response are important in assessing the amount of liver damage experienced over time and in quantifying the duration of therapy leading to virus resolution in each of the observed profiles.
Interpolatory projection methods for model reduction of nonparametric linear dynamical systems have been successfully extended to nonparametric bilinear dynamical systems. However, this is not the case for parametric bilinear systems. In this work, we aim to close this gap by providing a natural extension of interpolatory projections to model reduction of parametric bilinear dynamical systems. We introduce necessary conditions that the projection subspaces must satisfy to obtain parametric tangential interpolation of each subsystem transfer function. These conditions also guarantee that the parameter sensitivities (Jacobian) of each subsystem transfer function is matched tangentially by those of the corresponding reduced order model transfer function. Similarly, we obtain conditions for interpolating the parameter Hessian of the transfer function by including extra vectors in the projection subspaces. As in the parametric linear case, the basis construction for two-sided projections does not require computing the Jacobian or the Hessian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.