BackgroundDilated cardiomyopathy (DCM) is a leading cause of chronic morbidity and mortality in muscular dystrophy (MD) patients. Current pharmacological treatments are not yet able to counteract chronic myocardial wastage, thus novel therapies are being intensely explored. MicroRNAs have been implicated as fine regulators of cardiomyopathic progression. Previously, miR‐669a downregulation has been linked to the severe DCM progression displayed by Sgcb‐null dystrophic mice. However, the impact of long‐term overexpression of miR‐669a on muscle structure and functionality of the dystrophic heart is yet unknown.Methods and ResultsHere, we demonstrate that intraventricular delivery of adeno‐associated viral (AAV) vectors induces long‐term (18 months) miR‐669a overexpression and improves survival of Sgcb‐null mice. Treated hearts display significant decrease in hypertrophic remodeling, fibrosis, and cardiomyocyte apoptosis. Moreover, miR‐669a treatment increases sarcomere organization, reduces ventricular atrial natriuretic peptide (ANP) levels, and ameliorates gene/miRNA profile of DCM markers. Furthermore, long‐term miR‐669a overexpression significantly reduces adverse remodeling and enhances systolic fractional shortening of the left ventricle in treated dystrophic mice, without significant detrimental consequences on skeletal muscle wastage.ConclusionsOur findings provide the first evidence of long‐term beneficial impact of AAV‐mediated miRNA therapy in a transgenic model of severe, chronic MD‐associated DCM.
Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.
To characterize different cell populations in the human ovary, morphological and functional characteristics of cell populations collected during routine IVF procedures were studied. Cells obtained from follicular fluid grew in vitro under minimal medium conditions, without growth factor, including leukaemia-inhibiting factor. Morphological analysis revealed a heterogeneous cell population, with cells displaying a fibroblast-like, epithelial-like and also neuron-like features. Morpho-functional characteristics of fibroblast-like cells were similar to mesenchymal stem cells, and, in particular, were positive for mesenchymal stemness markers, including CD90, CD44, CD105, CD73, but negative for epithelial proteins, such as cytokeratins, CD34 and CD45 antigens. Cell proliferation activity at different times and colony-forming unit capability were evaluated, and multipotency of a subset of granulosa cells was established by in-vitro differentiation studies (e.g. osteogenic, chondrogenic and adipogenic differentiation). This study suggests that cells provided by mesenchymal plasticity can be easily isolated by waste follicular fluid, avoiding scraping of human ovaries, and cultivated in minimal conditions. Successful growth of such progenitor cells on three-dimensional cryogel scaffold provides the basis for future developments in tissue engineering. This culture system may be regarded as an experimental model in which biological behaviour is not influenced by specific growth factors.
The peptidergic innervation of human dental pulp was studied with indirect immunofluorescence and immunoperoxidase techniques. Pulpal nerve fibres displaying immunoreactivity for cholecystokinin, calcitonin gene-related peptide, C-terminal flanking peptide of neuropeptide tyrosine, leucine-enkephalin, methionine-enkephalin, neuropeptide K, neuropeptide tyrosine, peptide with N-terminal histidine and C-terminal isoleucine, somatostatin-28, substance P and vasoactive intestinal polypeptide were observed. Immunoreactive axon varicosities were detectable within radicular and coronal nerve trunks and within the nerve plexus of Raschkow in the para-odontoblastic region. Many peptidergic nerve fibres were observed in association with blood vessels of various sizes. Substance P- and calcitonin-gene-related peptide-immunoreactive axons were visible in the odontoblastic layer. The occurrence of VIP- and PHI-immunoreactive fibres lends support to the hypothesis that human tooth may be supplied by parasympathetic nerves. The immunocytochemical results here shown provide a morphological basis to previous experimental studies concerning the possible roles of neuropeptides in nociception mechanisms, control of the blood flow and modulation of the inflammatory response in dental tissues.
Proliferating cell nuclear antigen (PCNA), also referred to as cyclin, is an auxiliary protein to DNA-polymerase delta and a proposed marker of replicating cells. We have investigated the applicability and limitations of PC10 monoclonal antibody to PCNA in a cell kinetics study of developing human and rat tissues by immunocytochemical and flow cytometric techniques. Our data demonstrate that the epitope recognized by PC10 antibody is resistant to wax embedding, but sensitive to aldehyde fixation; conversely, alcoholic fixative solutions preserve the immunoreactivity to PC10. Tissue distribution, DNA content and bromodeoxyuridine uptake confirm that PC10-immunoreactive cells in alcohol-fixed tissues are cycling (G1-, S- and G2-phases traversing) cells. It is concluded that the PC10 antibody can be regarded as a powerful tool to study cell kinetics and differentiation in developing tissues, provided that the tissue processing is adequate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.