Background: Immune checkpoint blockade (ICB) with antibodies inhibiting cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) (or its ligand (PD-L1)) can stimulate immune responses against cancer and have revolutionized the treatment of tumors. The influence of host germline genetics and its interaction with tumor neoantigens remains poorly defined. We sought to determine the interaction between tumor mutational burden (TMB) and the ability of a patient's major histocompatibility complex class I (MHC-I) to efficiently present mutated driver neoantigens in predicting response ICB. Methods: Comprehensive genomic profiling was performed on 83 patients with diverse cancers treated with ICB to determine TMB and human leukocyte antigen-I (HLA-I) genotype. The ability of a patient's MHC-I to efficiently present mutated driver neoantigens (defined by the Patient Harmonic-mean Best Rank (PHBR) score (with lower PHBR indicating more efficient presentation)) was calculated for each patient. Results: The median progression-free survival (PFS) for PHBR score < 0.5 vs. ≥ 0.5 was 5.1 vs. 4.4 months (P = 0.04). Using a TMB cutoff of 10 mutations/mb, the stable disease > 6 months/partial response/complete response rate, median PFS, and median overall survival (OS) of TMB high/PHBR high vs. TMB high/PHBR low were 43% vs. 78% (P = 0.049), 5.8 vs. 26.8 months (P = 0.03), and 17.2 months vs. not reached (P = 0.23), respectively. These findings were confirmed in an independent validation cohort of 32 patients. Conclusions: Poor presentation of driver mutation neoantigens by MHC-I may explain why some tumors (even with a high TMB) do not respond to ICB.
Individual MHC genotype constrains the mutational landscape during tumorigenesis. Immune checkpoint inhibition reactivates immunity against tumors that escaped immune surveillance in approximately 30% of cases. Recent studies demonstrated poorer response rates in female and younger patients. Although immune responses differ with sex and age, the role of MHCbased immune selection in this context is unknown. We find that tumors in younger and female individuals accumulate more poorly presented driver mutations than those in older and male patients, despite no differences in MHC genotype. Younger patients show the strongest effects of MHC-based driver mutation selection, with younger females showing compounded effects and nearly twice as much MHC-II based selection. This study presents evidence that strength of immune selection during tumor development varies with sex and age, and may influence the availability of mutant peptides capable of driving effective response to immune checkpoint inhibitor therapy.
Background The major histocompatibility complex class I (MHC-I) molecule is a protein complex that displays intracellular peptides to T cells, allowing the immune system to recognize and destroy infected or cancerous cells. MHC-I is composed of a highly polymorphic HLA-encoded alpha chain that binds the peptide and a Beta-2-microglobulin (B2M) protein that acts as a stabilizing scaffold. HLA mutations have been implicated as a mechanism of immune evasion during tumorigenesis, and B2M is considered a tumor suppressor gene. However, the implications of somatic HLA and B2M mutations have not been fully explored in the context of antigen presentation via the MHC-I molecule during tumor development. To understand the effect that B2M and HLA MHC-I molecule mutations have on mutagenesis, we analyzed the accumulation of mutations in patients from The Cancer Genome Atlas according to their MHC-I molecule mutation status. Results Somatic B2M and HLA mutations in microsatellite stable tumors were associated with higher overall mutation burden and a larger fraction of HLA-binding neoantigens when compared to B2M and HLA wild type tumors. B2M and HLA mutations were highly enriched in patients with microsatellite instability. B2M mutations tended to occur relatively early during patients’ respective tumor development, whereas HLA mutations were either early or late events. In addition, B2M and HLA mutated patients had higher levels of immune infiltration by natural killer and CD8+ T cells and higher levels of cytotoxicity. Conclusions Our findings add to a growing body of evidence that somatic B2M and HLA mutations are a mechanism of immune evasion by demonstrating that such mutations are associated with a higher load of neoantigens that should be presented via MHC-I. Electronic supplementary material The online version of this article (10.1186/s12920-019-0544-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.