Improving the livelihoods of communities living in fragile ecosystems, such as tropical forests, is among the main strategies to promote their conservation and preserve wildlife. In the Ecuadorian Amazon, farmers’ cooperatives are recognized as an important mechanism to improve the socioeconomic conditions of local communities. This study analyzes the integration of pyrolysis processes to convert agricultural waste into biochar as a way to implement the bioeconomy in these organizations. We found that post-harvesting processes in the studied farmers’ cooperatives are similar, and coffee husks are a potential feedstock to produce biochar. Although the environmental policies in Ecuador consider the valorization of agricultural waste, we did not find any specific standard to regulate the operation of pyrolysis facilities. Nonetheless, conversion of agricultural waste into biochar can contribute to (i) replacement of subsidized fossil fuels used in drying processes, (ii) prevention of environmental pollution caused by accumulation of waste, (iii) emergence of new income sources linked with the provision of carbon sequestration services, and (iv) the long-term maintenance of soil fertility. Currently, demonstration projects are needed to stimulate collaboration among farmers’ cooperatives, academia, the government, international cooperation agencies, and existing forest conservation initiatives.
In the last decades, the cultivation of quinoa and lupin became an important source of income for Andean farmers due to the demand for high nutrient-density foods from the Global North. The increase in the cultivation intensity caused by this exogenous demand led to the overexploitation of local ecosystems and a decrease in soil fertility. As an alternative to recover and improve soil quality, this work uses a pilot-scale auger pyrolysis reactor, implemented in the Andes, to assess the conversion of the agro residues generated in the post-harvesting processes of quinoa and lupin into biochar for soil amendment. Following the European Biochar Certificate guidelines, the pyrolyzed quinoa stems can be classified as biochar while the pyrolyzed quinoa husks can be classified as pyrogenic carbonaceous material. Both can be used for soil amendment considering their molar ratios (H/Corg, O/Corg) and carbon content. It was not possible to carbonize lupin stems and seedcases. Despite the altitude (2,632 m.a.s.l), the CO concentration during the carbonization of quinoa stems and husks were 1,024.4 and 559 mg/Nm3, this last, near the European eco-design standard of 500 mg/Nm3. A subsequent SWOT analysis showed the need to explore low-cost and low-complexity pyrolysis reactors that allow the decentralized conversion of agro residues at the farm-scale. The development of local standards to regulate the production and use of biochar is also essential to grant the safety of the processes, the quality of the products, and mobilize funds that allow implementation at relevant scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.